01.1 Calculer le terme général des suites (u_n) suivantes :

1.
$$u_0 = 1$$
, $u_1 = 4$ et $\forall n \in \mathbb{N}$, $u_{n+2} = -2u_{n+1} - u_n$.

2.
$$u_0 = 4$$
, $u_1 = \frac{7}{3}$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \frac{7}{6}u_{n+1} - \frac{1}{3}u_n$

3.
$$u_0 = 2$$
, $u_1 = 3$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n$.

4.
$$u_0 = 1$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \frac{2}{3}u_{n+1} - \frac{2}{9}u_n$

5.
$$u_0 = 1$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 5u_{n+1} - 6u_n + 2$
(On commencera par chercher une suite constante c qui convient, et considérer ensuite $v_n = u_n - c$)

[01.2] Soit pour tout entier n, f_n la fonction définie sur $]0, +\infty[$ par : $\forall x > 0$, $f_n(x) = nx + \ln(x)$.

- 1. Pour tout entier n, Montrer que l'équation $f_n(x) = 0$ admet une unique solution sur $]0, +\infty[$, qui appartient à]0, 1]. On notera x_n cette solution.
- 2. Montrer que (x_n) est décroissante.
- 3. En déduire que (x_n) converge vers 0.
- 4. Montrer que pour $n \ge 3$, $x_n > \frac{1}{n}$.
- 5. Etudier le signe de $x \ln(x)$ et en déduire que $x_n < \frac{1}{\sqrt{n}}$.

[01.3] Soit la suite
$$(t_n)$$
 définie par $t_0 = 2$ et $\forall n \in \mathbb{N}, t_{n+1} = \frac{t_n}{1 + nt_n^2}$.

- 1. Etudier la monotonie de la suite (t_n) .
- 2. Montrer que (t_n) converge et déterminer sa limite.

01.4 Soit
$$(u_n)$$
 telle que $u_0 \ge 0$ et : $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{2 + u_n}$.

- 1. Montrer que la suite est bien définie.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} 2| \leq \frac{1}{2\sqrt{2}}|u_n 2|$.
- 3. En déduire la limite de (u_n) .

[01.5] Soit (u_n) telle que $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n}$.

- 1. (a) Montrer que (u_n) est croissante et minorée par 1.
 - (b) Montrer que (u_n) diverge vers $+\infty$.
 - (c) Calculer $\sum_{k=0}^{n-1} \frac{1}{u_k}$. En déduire que $u_n u_0 \geqslant \frac{n}{u_{n-1}}$.
 - (d) Montrer que $u_{n-1} = o(n)$, puis que $u_n = o(n)$.

- 2. (a) Montrer que $\forall k \in \mathbb{N}, 2 \leq u_{k+1}^2 u_k^2 \leq 2 + u_{k+1} u_k$.
 - (b) En déduire que : $\forall n \in \mathbb{N}, 2n+1 \leq u_n^2 \leq 2n+u_n$
 - (c) En déduire un équivalent de u_n .

01.6 On souhaite montrer que la suite $(\sin(n))$ n'admet pas de limite. Supposons par l'absurde que $(\sin(n))$ converge vers un réel ℓ .

- 1. Justifier que $S_n = \frac{1}{n} \sum_{k=1}^n \sin(k)$ converge vers ℓ .
- 2. Calculer $S'_n = \sum_{k=1}^n \sin(k)$ et en déduire que (S'_n) est bornée.
- 3. Montrer que $\ell = 0$.
- 4. Montrer que $\sin(n+1)=\sin(n)\cos(1)+\cos(n)\sin(1)$. En déduire que $(\cos(n))$ converge vers 0 et conclure.

 $\boxed{\textbf{01.7}} \quad \text{Soit } (u_n) \text{ une suite de réels convergeant vers un réel ℓ. En vous inspirant de la démonstration de Cesàro, montrer que : } v_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} u_k \text{ -0.15cm}$ converge également vers \$\ell\$.

01.8 On pose (u_n) telle que $u_0 \in]0,1[$ et $: \forall n \in \mathbb{N}, u_{n+1} = (1-u_n)u_n.$

- 1. Montrer que (u_n) converge vers 0.
- 2. On considère la suite (v_n) définie par : $\forall n \in \mathbb{N}, \ v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$. Montrer que (v_n) converge vers 1.
- 3. Simplifier la somme $\sum_{k=1}^{n} v_k$.
- 4. En appliquant le théorème de Cesàro, trouver un équivalent simple de u_{n+1} . En déduire un équivalent de u_n .

01.9 Etudier les convergences des suites suivantes :

$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}, \quad v_n = \sum_{k=1}^n \frac{k}{n^2 + k^2}, \quad w_n = \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(2n)}$$

$$x_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + 2kn}}, \quad y_n = \prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)^{1/n}, \quad z_n = \frac{1}{n^2} \sum_{k=1}^n \frac{k}{\sqrt[n]{e^k}}$$