ESC Bordeaux, ESC Marseille-Provence, ESC Reims, ESC Rouen, ICN Nancy

CONCOURS D'ADMISSION 2000

Option lettres et sciences humaines ULM BL

MATHÉMATIQUES

Mardi 23 mai 2000 de 14 h 00 à 17 h 00

Durée: 3 heures

Aucun instrument de calcul n'est autorisé. Aucun document n'est autorisé.

L'énoncé comporte 6 pages.

Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé, et à donner des démonstrations complètes (mais brèves) de leurs affirmations.

EXERCICE 1:

E est l'ensemble des polynômes, à coefficients réels, de degré inférieur ou égal à 4 (que l'on peut encore noter $\Re_4[X]$); on désigne par B la base canonique de E, formée des éléments e_k : ainsi e_k (X) = X^k pour k = 0, 1, 2, 3 et 4.

On désigne, d'autre part, par I l'ensemble des polynômes impairs, et par P l'ensemble des polynômes pairs de E.

- a) Montrer que E est somme directe de I et de P, c'est à dire que $E = I \oplus P$.
- b) On considère l'ensemble des polynômes p_k définis, pour k = 0, 1, ..., 4, par

$$p_k(X) = \sum_{j=0}^k X^j$$

- 1) Montrer que les p_k constituent une base de E que l'on notera B';
- 2) Soit P le polynôme $\sum_{k=0}^{4} a_k e_k$ ou les a_k sont des réels ; exprimer les composantes de P dans la base B'
- c) On consider l'application $f: p \mapsto f(p)$ définie par $f(p)(X) = (X^2 + 1)p''(X) Xp'(X)$
 - 1) Montrer que f est un endomorphisme de E, laissant stables l et P;
 - 2) Donner la matrice M_f de f dans la base B;
 - 3) Déterminer le noyau de f; M_I est-elle inversible?
 - 4) Déterminer les valeurs propres de f; $M\ell$ est-elle diagonalisable?

EXERCICE 2 :Un atelier fabrique des pièces selon un processus composé de deux opérations O_1 et O_2 faites successivement : une pièce est d'abord façonnée sur un premier type de machine :c'est l'opération O_1 ; puis elle finie sur une second type de machine : c'est l'opération O_2 .

- a)L'opération O₁est effectuée par 3 machines M₁, M₂ et M₃
- M_1 façonne 1500 pièces par jour avec une proportion $p_1 = 0.006$ de défectueuses,
- M_2 façonne 2 000 pièces par jour avec une proportion $p_2 = 0.008$ de défectueuses,
- M_3 façonne 2500 pièces par jour avec une proportion $p_3 = 0,004$ de défectueuses;

De la production journalière, on extrait une pièce au hasard.

- 1) Calculer la probabilité qu'elle soit défectueuse ;
- 2) La pièce extraite est défectueuse ; calculer la probabilité, alors, qu'elle ait été façonnée par M₁ ?par M₁ ou M₂ ?
- b) Les 6000 pièces produites quotidiennement passent ensuite, par lots de 500, sur une machine unique M pour la finition. Il s'avère que chaque pièce a une probabilité égale à 0,015 d'être ratée par M, indépendamment du fait qu'elle ait été bien ou mal façonnée.
 - On prélève 10 pièces dans un lot ayant subi l'opération O₂, et on désigne par X le nombre de pièces pour laquelle l'opération O₂ a échoué.
 Quelle est la loi suivie par X ?Donner son espérance et sa variance.
 - 2) On étudie maintenant tout un lot de 500 pièces, et on désigne par Y le nombre de pièces pour laquelle l'opération O₂ a échoué. Par quelle loi de probabilité peut-on approcher Y ?Donner alors les probabilités des événements suivants :

$$Y = 5$$
 ; $Y \le 6$; $Y = 3$ sachant $Y \le 6$.

- c) On tire maintenant une pièce au hasard parmi les 6000 produites quotidiennement, et ayant subi les 2 opérations. Calculer les probabilités des événements suivants :
 - 1) Les 2 opérations ont été mal faites;
 - 2) Une seule opération a été mal faite

PROBLEME

Dans tout le problème, on dit qu'une fonction f définie sur $[0; +\infty[$ et à valeurs dans R vérifie les conditions \mathbb{C} si :

- f est continue sur $[0; +\infty[$
- Il existe un réel $A \ge 0$, un réel $\alpha > 0$, et un entier p de N tels que, pour tout $t \ge A$, $|f(t)| \le \alpha t^p$.

PARTIE I: n étant un entier naturel, f est la fonction définie sur $[0; +\infty[$ par $f(t)=t^n$.

- 1) Montrer que f vérifie les conditions \mathbb{O} .
- 2) Soit φ la fonction définie sur $[0; +\infty[$ par $\varphi(t) = t^n e^{-xt}, x$ étant un réel strictement positif.
 - a) Donner le tableau de variations de φ .
 - b) En déduire qu'il existe un réel t_0 tel que pour tout $t > t_0, \varphi(t) < 1$.
 - c) Montrer que pour tout x>0, $\int_{0}^{+\infty} \varphi(t)dt$ converge.
- 3) On appelle $K_{\mathbb{Z}}$ l'application de]0; $+\infty$ [dans R par $K_{\mathbb{Z}}(x) = \int_{0}^{+\infty} \varphi(t) dt$.
 - a) Exprimer, pour n > 0, $K_n(x)$ en fonction de $K_{n-1}(x)$.
 - b) Exprimer, pour n > 0, $K_n(x)$ en fonction de n et de x.
 - c) On considère la série de terme général $K_n(x)$, x étant un réel strictement positif ;pour quelles valeurs de x converge-t-elle?

4) Calculer
$$\int_{0}^{+\infty} (1+t+t^2+t^3+t^4)e^{-xt}dt$$
.

PARTIE II: dans cette partie, f est la fonction définie sur $[0; +\infty)$ par $f(t) = \sin t$.

- 1) Montrer que f vérifie les conditions \mathbb{O} .
- 2) Montrer que $\int_{0}^{+\infty} (\sin t)e^{-xt} dt$ converge.
- 3) On appelle g l'application de]0; $+\infty$ [dans R, définie par $g(x) = \int_{0}^{+\infty} (\sin t)e^{-xt} dt$;
 - a) à l'aide d'une double intégration par parties, déterminer une expression explicite de g(x);
 - b) déterminer une primitive sur]0; $+\infty$ [de la fonction : $t \mapsto \sin t \cdot e^{-xt}$ sous la forme $e^{-xt}(\lambda \cos t + \mu \sin t), (\lambda; \mu) \in \mathbb{R}^2$.

Retrouver l'expression explicite de g(x).

- PARTIE III: f est une fonction définie sur $[0; +\infty]$ [et à valeurs dans R vérifiant les conditions \mathbb{C} .
 - 1) Montrer que, pour tout x strictement positif, les intégrales

$$\int\limits_{0}^{+\infty}f(t)e^{-xt}dt\,,\int\limits_{0}^{+\infty}t.f(t).e^{-xt}dt\,,\int\limits_{0}^{+\infty}t^{2}.f(t).e^{-xt}dt\;\text{convergent}.$$

On appelle g l'application de]0; $+\infty$ [dans R, définie par $g(x) = \int_{0}^{+\infty} f(t)e^{-xt}dt$

- 2) Soit u_0 un réel positif quelconque, montrer que pour tout $u \le u_0$, on a $\left|e^u 1 u\right| \le e^{u_0} \cdot \frac{u^2}{2}$.
- 3) Soit x_0 un réel strictement positif et h tel que $|h| \le x_0/2$; montrer que, pour tout $t \ge 0$, $|e^{-ht} 1 + ht| \le e^{x_0t/2} \cdot \frac{h^2t^2}{2}$.
- 4) En déduire que, pour tout x_0 , et pour tout h tel que $|h| \le \frac{x_0}{2}$,

$$\left| \frac{g(x_0 + h) - g(x_0)}{h} + \int_0^{+\infty} t \cdot f(t) \cdot e^{-x_0 t} dt \right| \le \frac{|h|}{2} \int_0^{+\infty} t^2 \cdot |f(t)| e^{-x_0 t/2} dt$$

Montrer que g est dérivable sur]0; $+\infty$ [, et que, pour $x_0 > 0$,

$$g'(x_0) = -\int_0^{+\infty} t \cdot f(t) \cdot e^{-x_0 t} dt.$$

5) Soit $f:t\mapsto \frac{\sin t}{t}$; donner l'expression de g'(x) pour tout x>0, puis en déduire celle de g(x).

SUJET DE MATHEMATIQUES

Option lettres et sciences humaines

Epreuve du 23 mai 2000 de 14h00 à 17h00

en page 2, exercice 2, ligne 3,

lire : elle est finie

Information à transmettre aux étudiants composant en BL.

Avec nos remerciements.

Service Concours

FONCTION DE REPARTITION DE LA LOI NORMALE REDUITE

 $F(u) = P(X \le u)$

u	0, 00	0, 01	0, 02	0, 03	0, 04	0, 05	0, 06	0, 07	0, 08	0, 09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5100	0 5220	0 5270	0 6210	0 5250
0, 0	0, 5000		1			1	1		0, <i>5</i> 319 0, <i>5</i> 714	0, 5359 0, 5753
0, 1 0, 2	0, 5398 0, 5793	0, 5438	0, 5871	0, 5910	0, 5948	1			0, 6103	1
0, 2	0, 5179	0, 6217	0, 6255	0, 6293	0, 6331	1	0, 6406	0, 6443	0, 6480	0, 6517
0, 3	0, 6554	0, 6591	0, 6628	0, 6664	1	1	0, 6772	0, 6808	0, 6844	1
0, 5	0, 6915	0, 6950		0, 7019		1	0, 7123		0, 7190	1
0, 6	0, 7257	1		0, 7357	0, 7389		0, 7454	0, 7486	0, 7517	0, 7549
0, 7	0, 7580		0, 7642			}	0, 7764	0, 7794	0, 7823	0, 7852
0, 8	0, 7881	1			0, 7995	0, 8023	0, 8051	0, 8078.	0, 8106	0, 8133
0, 9	0, 8159	0, 8186	0, 8212	0, 8238	0, 8264	0, 8289	0, 8315	0, 8340	0, 8365	0, 8389
1, 0	0, 8413	0, 8438	0, 8461	0, 8485	0, 8508	0, 8531	0, 8554	0, 8577	0, 8599	0, 8621
1, 1	0, 8643	0, 8665	0, 8686	0, 8708	0, 8729	0, 8749	0, 8770	0, 8790	0, 8810	0, 8830
1, 2	0, 8849	0, 8869	0, 8888	0, 8907	0, 8925	0, 8944	1	('	1	1
1, 3	0, 9032	0, 9049	0, 9066	0, 9082	0, 9099	1	i		0, 9162	1 1
1, 4	0, 9192	0, 9207	1	0, 9236	1	1	l .	0, 9292	ì	1 1
1, 5	0, 9332	0, 9345	1	1	1	1	1	0, 9418	1	1
1, 6	0, 9452	1	1	1			· ·	1	1	1
1,7	0, 9554	1	1	1	1	1	1	1	1	1 1
1, 8	0, 9641	1	1	1		1	t	1	1	1
1, 9	0, 9713	3 0, 9719	0, 9726	0, 9732	0, 9738	0, 9744	1 0, 9750	0, 9756	0, 976	1 0, 9767
1 2 0	0.077	0 0770	0 0703	0, 9788	0, 9793	2 0 0709	0, 9803	0, 9808	0, 981	2 0, 9817
2, 0	ŧ		1	1	1	8 0, 9842		1	1	
2, 1 2, 2		1 0, 9864	1	1	4	$5 \mid 0, 9878$	t		}	1 '
2, 2	1 '	1	0, 9898	1	ı	1	6 0, 9909	i	1	1
2, 3		1	0,9922		5 0, 992	1	9 0, 993	1	1	4 0, 9936
2, 5		8 0, 9940	1	1 '	1 '	1	1 -	1	1 '	1
2, 6	1	3 0, 995	1	1	1 '	1 '		1	1	1
. 2, 7	• [1	1	1	1	1		1	1	1 '
2, 8		4 0, 997	1			7 0, 997	1	1	9 0, 998	0, 9981
2, 9	1	1	1	1	1	1	1	5 0, 998	5 0, 998	86 0, 9986

Table pour les grandes valeurs de u :

u	3, 0	3, 1	3, 2	3, 3	-3, 4	3, 5	3, 6	3, 8	4, 0	4, 5
F (u)	0, 99865	0, 99904	0, 99931	0, 99952	0 , 9 9966	0, 99976	0, 999841	0, 999928	0, 999968	0, 999997

TABLE DE LA LOI DE POISSON

Fréquences individuelles et cumulées de la variable $\mathfrak{T}(m)$.

$$f_x = \frac{e^{-m}m^x}{x!};$$
 $F(x+0) = \sum_{k=0}^x \frac{e^{-m}m^k}{k!}$

$\backslash m$	1		2			3	4	4	5	
x	f_x	F(x+0)	f _x	F(x+0)	f _x	F(x+0)	f _x	F(x+0)	f _x	F(x+0)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0,3679 0,3679 0,1839 0,0613 0,00153 0,00031 0,0005	0 0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999 1,0000	0,1353 0,2707 0,2707 0,1804 0,0902 0,0361 0,0120 0,0034 0,0009 0,0002	0 0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989 1,0000	0,0498 0,1494 0,2240 0,1680 0,1008 0,0504 0,0216 0,0027 0,0008 0,0002 0,0002	0 0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989 0,9997 0,9999	0,0183 0,0733 0,1465 0,1954 0,1954 0,1563 0,1042 0,0595 0,0298 0,0132 0,0053 0,0019 0,0006 0,0002 0,0001	0,0183	0,0337	0 0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863 0,9945 0,9980 0,9993 0,9998 0,9999

TABLE DE LA LOI DE POISSON (suite)

Fréquences individuelles et cumulées de la variable $\mathfrak{T}(m)$.

$$fx = \frac{e^{-m}m^x}{x!};$$
 $F(x + 0) = \sum_{k=0}^{x} \frac{e^{-m}m^k}{k!}$

		6		7		8		9		0
x	fx	F(x+0)	fx	F(x+0)	fx	F(x+0)	fx	F(x+0)	fx	F(x+0)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0,0025 0,0149 0,0446 0,0892 0,1339 0,1606 0,1606 0,1377 0,1033 0,0688 0,0413 0,0225 0,0113 0,0052 0,0009 0,0003 0,0001	F(x+0)	7x 0,0009 0,0064 0,0223 0,0521 0,0912 0,1490 0,1490 0,1304 0,1014 0,0710 0,0452 0,0264 0,0142 0,0071 0,0033 0,0014 0,0006 0,0002 0,0001	F(x+0)	7x 0,0003 0,0027 0,0107 0,0286 0,0573 0,0916 0,1221 0,1396 0,1241 0,0993 0,0722 0,0481 0,0296 0,0169 0,0090 0,0045 0,00021 0,0009 0,0004 0,0002 0,0001	0 0,0003 0,0030 0,0138 0,0424 0,0996 0,1912 0,3134 0,4530 0,5925 0,7166 0,8159 0,8881 0,9362 0,9658 0,9827 0,9918 0,9963 0,9993 0,9997 0,9999	72 0,0001 0,0011 0,0050 0,0150 0,0337 0,0607 0,0911 0,1171 0,1318 0,1318 0,1318 0,1318 0,0970 0,0728 0,0504 0,0194 0,0109 0,0058 0,0029 0,0014 0,0006 0,0003 0,0001	0 0,0001 0,0001 0,0012 0,0062 0,0212 0,0550 0,1157 0,2068 0,3239 0,4557 0,5874 0,7060 0,8030 0,8758 0,9261 0,9585 0,9780 0,9889 0,9947 0,9976 0,9989 0,9996 0,9998	ε 0,0005 0,0023 0,0076 0,0189 0,0378 0,0631 0,0901 0,11251 0,1251 0,1251 0,1251 0,01251 0,0347 0,0948 0,0729 0,0521 0,0347 0,0128 0,0071 0,0037 0,0019 0,0009	0
23 24								1,0000	0,0002 0,0001	0,9997 0,9999 1,0000