Déterminer la forme algébrique des complexes suivants :

1.
$$z = (3+2i)(5+i) - (2-i)(1+i)$$

2.
$$z_2 = \frac{1}{1+i} - 1$$

3.
$$z_3 = i^n \ (n \in \mathbb{N}),$$

4.
$$z_4 = \frac{(2+i)^2}{1-3i}$$

5.
$$z_5 = (i - \sqrt{2})^3$$

6.
$$z_6 = \frac{1}{\frac{1}{i+1} - 1}$$

Déterminer le module et un argument des complexes suivants : 08.2

1.
$$z_1 = 1 + i$$

3.
$$z_3 = 1 + \sqrt{3}$$

5.
$$z_5 = -\sqrt{2}i$$

2.
$$z_2 = 1 - i$$

$$4. \ z_4 = -2$$

1.
$$z_1 = 1 + i$$
 3. $z_3 = 1 + \sqrt{3}i$ 5. $z_5 = -\sqrt{2}i$ 2. $z_2 = 1 - i$ 4. $z_4 = -2$ 6. $z_6 = (1 + \sqrt{3}i)^5$

08.3 Montrer que :
$$\forall (z_1, z_2) \in \mathbb{C}^2$$
, $||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$.

Soit $t \in \mathbb{R}$. Déterminer le module de $z_1 = t^2 + 2it - 1$ et de $z_2 = \frac{1+it}{1-it}$, simplifiés au maximum.

Soit $\theta \in \mathbb{R}$. Mettre les complexes $z_1 = 1 + e^{i\theta}$ et $z_2 = 1 - e^{i\theta}$ sous forme trigonométrique.

08.6Soit $x \in \mathbb{R}$ et soit $n \in \mathbb{N}$. Calculer les sommes suivantes :

$$A_n(x) = \sum_{k=0}^n \cos(kx), \qquad B_n(x) = \sum_{k=0}^n \sin(kx)$$
$$C_n(x) = \sum_{k=0}^n \binom{n}{k} \cos(kx), \qquad D_n(x) = \sum_{k=0}^n \binom{n}{k} \sin(kx)$$

Soit a un réel strictement positif. Résoudre dans \mathbb{C} les équations suivantes (donner les solutions sous forme algébrique et exponentielle):

1.
$$z^2 = a$$

3.
$$z^2 = ia$$

1.
$$z^2 = a$$
 | 3. $z^2 = ia$ | 5. $z^2 = -a^2$
2. $z^2 = -a$ | 4. $z^2 = -ia$ | 6. $z^2 = ia^2$

2.
$$z^2 = -c$$

$$4 \quad \gamma^2 = -i\alpha$$

6.
$$z^2 = ia^2$$

Résoudre les équations suivantes dans \mathbb{C} : 08.8

1.
$$iz + 5i - 3 = (1 - 4i)z - 1$$

2.
$$(iz+1)^2(2z-3i)=0$$

3.
$$z^2 + z + 1 = 0$$

4.
$$z^2 = 8 - 6i$$

5.
$$z^2 = 2 - 3i\sqrt{5}$$

6.
$$iz^2 + (4i - 3)z + i - 5 = 0$$

7.
$$z^2 - (1+5i)z - 6 + 7i = 0$$

8.
$$(z+1)^4 + (z+1)^2 + 1 = 0$$

9.
$$z^3 = i$$

10.
$$z^3 = 4\sqrt{2}(1-i)$$

11.
$$z^6 + 64 = 0$$

12.
$$e^z = 2 + 2i$$

13.
$$(z-2)^n = (z+2)^n$$
 (avec $n \in \mathbb{N}$).

14.
$$(z+i)^n = (z-i)^n \text{ (avec } n \in \mathbb{N}).$$

Déterminer sous forme algébrique les racines carrées de $\sqrt{3} + i$. En déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

$$\boxed{\textbf{08.10}} \quad \text{On note } \omega = \exp\left(\frac{2i\pi}{7}\right).$$

On pose $u = \omega + \omega^2 + \omega^4$ et $v = \omega^3 + \omega^5 + \omega^6$.

Calculer u + v et uv. En déduire u et v.