Soit A une matrice fixée de $\mathcal{M}_n(\mathbb{R})$ $(n \ge 1)$. On considère l'ensemble $E = \{M \in \mathcal{M}_n(\mathbb{R}) \mid AM = MA\}$. Montrer que E est un espace vectoriel.

- $E \subset \mathcal{M}_n(\mathbb{R})$
- $E \neq \emptyset$, puisque la matrice nulle O vérifie bien AO = OA, donc $O \in E$.
- Soient M_1 et M_2 deux matrices de E et soit $\lambda \in \mathbb{R}$. Alors :

$$A(\lambda M_1 + M_2) = \lambda A M_1 + A M_2 = \lambda M_1 A + M_2 A = (\lambda M_1 + M_2) A$$

Ainsi, $\lambda M_1 + M_2 \in E$.

L'ensemble E est donc stable par combinaison linéaire.

Conclusion : E est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, donc c'est un espace vectoriel.

Déterminer une base de $\mathcal{M}_2(\mathbb{R})$ formée uniquement de matrices inversibles.

Prenons des matrices triangulaires sans zéro sur la diagonale pour être assuré qu'elles soient inversibles.

- On peut déjà prendre $I=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ qui est bien inversible.
- Posons $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. A est triangulaire (car diagonale) sans zéro sur la diagonale, donc A est bien inversible. De plus, I et A étant non colinéaires, (I, A) est libre.
- De plus, I et A étant non colinéaires, (I, A) est libre.

 Posons $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. La matrice B est triangulaire sans zéro sur la diagonale, donc B est inversible. De plus, clairement $B \notin Vect(I, A)$ (à cause du coefficient $b_{1,2}$), donc (I, A, B) est libre.
- Posons $C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. La matrice C est triangulaire sans zéro sur la diagonale, donc C est inversible. De plus, clairement $C \notin Vect(I,A,B)$ (à cause du coefficient $c_{2,1}$), donc (I,A,B,C) est libre.

Ainsi, la famille $(I, A, B, C) = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \end{pmatrix}$ est une famille libre de cardinal 4, dans $\mathcal{M}_2(\mathbb{R})$ qui est de dimension 4, c'est bien une base, et elle composée uniquement de matrices inversibles.

Soit $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. On note $\forall M \in \mathcal{M}_2(\mathbb{R}), \ f(M) = AM$. Montrer que f est linéaire, déterminer son image, son noyau, son rang, et la matrice de f dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.

• Pour toute matrice $M \in \mathcal{M}_2(\mathbb{R})$, f(M) = AM. Montrons que f est linéaire.

Soient M_1 et $M_2 \in \mathcal{M}_2(\mathbb{R})$ et $\lambda \in \mathbb{R}$. On a :

$$f(\lambda M_1 + M_2) = A(\lambda M_1 + M_2) = \lambda AM_1 + AM_2 = \lambda f(M_1) + f(M_2)$$

Ainsi, f est bien une application linéaire.

• Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Alors:

$$f(M) = AM = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ -a & -b \end{pmatrix}$$

Ainsi:

$$\operatorname{Im}(f) = \left\{ \left(\begin{array}{cc} c & d \\ -a & -b \end{array} \right), \ a, b, c, d \in \mathbb{R} \right\} = \operatorname{Vect}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right) \right) = \mathcal{M}_2(\mathbb{R})$$

L'application f est donc surjective, et son rang vaut 4.

• D'après le théorème du rang, $\dim(\mathcal{M}_2(\mathbb{R})) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = \dim(\operatorname{Ker}(f)) + \dim(\mathcal{M}_2(\mathbb{R}), \operatorname{donc} \dim(\operatorname{Ker}(f))) = 0$. L'application f est donc injective.

Remarque: Rien d'étonnant puisqu'en dimension finie un endomorphisme est surjectif si et seulement s'il est injectif, si et seulement s'il est bijectif.

- \bullet D'après l'expression de f(M) calculée précédemment, on obtient :
 - $\star f(E_{1,1}) = -E_{2,1}.$
 - $\star f(E_{1,2}) = -E_{2,2}.$
 - $\star f(E_{2,1}) = E_{1,1}.$
 - $\star f(E_{2,2}) = E_{1,2}.$

Ainsi, la matrice de f dans la base canonique de $\mathcal{M}_2(\mathbb{R})$ est donnée par :

$$\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)$$

- 4 Montrer que les ensembles suivants sont des espaces vectoriels et en déterminer une base.
 - 1. $F = \{ P \in \mathbb{R}_3[x] / P(0) = 0 \}$
 - 2. $G = \{ P \in \mathbb{R}_3[x] / P(1) = P'(1) = 0 \}.$
 - 3. $H = \{ P \in \mathbb{R}_3[x] / P(0) = 0 \text{ et } P'(1) = 0 \}$
 - 4. $I = \{P \in \mathbb{R}_2[x] \mid \forall x \in \mathbb{R}, \ P(x) = ax^2 + (b-2a)x + a b + c, \ a, b, c \in \mathbb{R}\}$
 - 1. $F = \{ax^3 + bx^2 + cx, a, b, c \in \mathbb{R}\} = Vect(x^3, x^2, x)$. F est donc directement un sous-espace vectoriel de $\mathbb{R}_3[x]$, donc c'est un espace vectoriel. La famille (x^3, x^2, x) étant libre (en tant que sous famille d'une famille libre puisqu'issue de la base canonique), c'est une base de F. On a donc dim(F) = 3.
 - 2. $G = \{(x-1)^2(ax+b), a, b \in \mathbb{R}\} = Vect\left(x(x-1)^2, (x-1)^2\right)$. G est donc directement un sous-espace vectoriel de $\mathbb{R}_3[x]$, donc c'est un espace vectoriel. La famille $\left(x(x-1)^2, (x-1)^2\right)$ est libre (composée de polynômes non nuls de degrés distincts), donc c'est une base de G. On a donc $\dim(G) = 2$.
 - 3. Soit $P = ax^3 + bx^2 + cx + d$, avec $a, b, c, d \in \mathbb{R}$. On a :

$$P \in H \Longleftrightarrow \left\{ \begin{array}{l} P(0) = 0 \\ P'(1) = 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} d = 0 \\ 3a + 2b + c = 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} d = 0 \\ c = -3a - 2b \end{array} \right.$$

Finalement:

$$H = \left\{ ax^3 + bx^2 + (-3a - 2b)x, a, b \in \mathbb{R} \right\} = Vect\left(x^3 - 3x, x^2 - 2x\right)$$

H est donc directement un sous-espace vectoriel de $\mathbb{R}_3[x]$, donc c'est un espace vectoriel.

La famille $\left(x^3 - 3x, x^2 - 2x\right)$ est libre (composée de polynômes non nuls de degrés distincts), donc c'est une base de H. On a donc $\dim(H) = 2$.

4.

$$I = \{ax^2 + (b-2a)x + a - b + c, \ a, b, c \in \mathbb{R}\} = Vect\left(x^2 - 2x + 1, \ x - 1, \ , 1\right)$$

Donc directement, I est un sous-espace vectoriel de $\mathbb{R}_2[x]$, donc c'est un espace vectoriel.

La famille $\left(x^2-2x+1\;,\;x-1,\;,1\right)$ est libre (composée de polynômes non nuls de degrés distincts), donc c'est une base de I. On a donc $\dim(I)=3=\dim(\mathbb{R}_2[x])$ donc $I=\mathbb{R}_2[x]$.

- 1. La famille $(x, x + 1, x^2 1)$ est-elle libre dans $\mathbb{R}_2[x]$?
- 2. La famille $(3x^2+x+2,3x^2+x+1,2x^2+x+1)$ est-elle une base de $\mathbb{R}_2[x]$?
- 3. La famille $(x^3, x^2(x-2), x(x-2)^2, (x-2)^3)$ est-elle une base de $\mathbb{R}_3[x]$?
- 4. Montrer que la famille $(x^2 + x + 1, 2x^2 + 3x + 4, -x^2 + x + 1)$ est une base de $\mathbb{R}_2[x]$.
- 5. Soit P un polynôme de degré $n \ge 1$. Montrer que la famille $(P, P', P'', \dots, P^{(n)})$ est une base de $\mathbb{R}_n[x]$.
 - 1. (x, x + 1) est libre puisque les deux polynômes sont non proportionnels. De plus, vu les degrés, $x^2 - 1 \notin Vect(x, x + 1)$. Donc $(x, x + 1, x^2 - 1)$ est libre.
 - 2. Soient $a,b,c\in\mathbb{R}$ tels que $a(3x^2+x+2)+b(3x^2+x+1)+c(2x^2+x+1)=0$. Alors, on a $(3a+3b+2c)x^2+(a+b+c)x+(2a+b+c)=0$. Par identification, on a donc nécessairement :

$$\begin{cases} 3a+3b+2c=0 \\ a+b+c=0 \\ 2a+b+c=0 \end{cases} \implies \begin{cases} a=0 \\ 3b+2c=0 \\ b+c=0 \end{cases} \implies \begin{cases} a=0 \\ c=0 \end{cases}$$

La famille $(3x^2+x+2, 3x^2+x+1, 2x^2+x+1)$ est donc libre dans $\mathbb{R}_2[x]$, et de cardinal 3 sachant que dim $(\mathbb{R}_2[x]) = 3$, donc c'est une base de $\mathbb{R}_2[x]$.

3. Soient $a, b, c, d \in \mathbb{R}$ tels que :

(*):
$$ax^3 + bx^2(x-2) + cx(x-2)^2 + d(x-2)^3 = 0_{\mathbb{R}[x]}$$

Alors, cela signifie que:

$$\forall t \in \mathbb{R}, \ at^3 + bt^2(t-2) + ct(t-2)^2 + d(t-2)^3 = 0$$

En particulier, pour t=2 et t=0, on obtient que a=0 et d=0.

En revenant à (*), on a donc :

$$bx^{2}(x-2) + cx(x-2)^{2} = 0_{\mathbb{R}[x]},$$
 autrement dit : $x(x-2)\left(bx + c(x-2)\right) = 0_{\mathbb{R} \neq [x]}$

Puisque x(x-2) n'est pas le polynôme nul, on a forcément :

$$bx + c(x-2) = 0_{\mathbb{R}[x]}$$

autrement dit, en identifiant les coefficients, on a : (b+c)=0 et -2c=0, donc b=c=0.

Finalement, la famille $(x^3, x^2(x-2), x(x-2)^2, (x-2)^3)$ est bien libre, et de cardinal 4, dans $\mathbb{R}_3[x]$ de dimension 4, donc c'est une base de $\mathbb{R}_3[x]$.

- 4. Les trois polynômes sont bien dans $\mathbb{R}_2[x]$ et le cardinal de la famille vaut la dimension de $\mathbb{R}_2[x]$. Il suffit donc de vérifier que la famille est libre.
 - $(x^2 + x + 1, -x^2 + x + 1)$ est bien libre (les deux polynômes sont non proportionnels).

De plus, $2x^2 + 3x + 4 \notin Vect(x^2 + x + 1, -x^2 + x + 1)$ (à cause des termes en x et 1), donc la famille $(x^2 + x + 1, -x^2 + x + 1, 2x^2 + 3x + 4)$ est bien libre. C'est une base de $\mathbb{R}_2[x]$.

5. Soit P un polynôme de degré n. Alors P' est de degré n-1, P'' est de degré n-2, ..., $P^{(n)}$ est constant donc de degré 0.

Finalement, la famille $(P, P', P'', \dots, P^{(n)})$ comporte n+1 polynômes non nuls de $\mathbb{R}_n[x]$, tous de degrés distincts, donc c'est une base de $\mathbb{R}_n[x]$.

Soit $F = \{P \in \mathbb{R}_4[x] / P(0) = 0\}$ et $G = Vect(x^2 + 1)$. Montrer que $\mathbb{R}_4[x] = F \oplus G$.

 $F = \{ax^4 + bx^3 + cx^2 + dx, a, b, c, d \in \mathbb{R}\} = Vect(x^4, x^3, x^2, x), \text{ donc dim}(F) = 4.$

 $G = Vect(x^2 + 1)$, donc dim(G) = 1.

Puisque $\dim(G)=1$, on ne peut avoir que $\dim(F\cap G)=0$ ou $\dim(F\cap G)=1$. Si $\dim(F\cap G)=1=\dim(G)$, on aurait $F\cap G=G$ et donc $G\subset F$. Or, $x^2+1\in G$ mais $x^2+1\not\in F$ (puisque le polynôme x^2+1 ne s'annule pas en 0). Donc finalement $F\cap G=\{0\}$.

Finalement, F et G sont bien en somme directe, et on a $\dim(F \oplus G) = \dim(F) + \dim(G) = 4 + 1 = 5 = \mathbb{R}_4[x]$, donc $F \oplus G = \mathbb{R}_4[x]$.

Soit $E = \mathbb{R}_3[x]$.

Soit $F = Vect(P_1, P_2, P_3)$ avec : $P_1 = 2x^2 - x + 1$, $P_2 = x^3 + x^2 + 1$, $P_3 = x^3 - x^2 + x$.

Soit $G = \{ P \in E / P(1) = 0 \}.$

Déterminer une base et la dimension de F, G, F + G, $F \cap G$.

• La famille (P_1, P_2, P_3) est liée car :

$$P_3 = x^3 - x^2 + x = (x^3 + x^2 + 1) - (2x^2 - x + 1) = P_2 - P_1$$

Ainsi, $F = Vect(P_1, P_2)$ et (P_1, P_2) libre puisque polynômes non nuls de degrés distincts, donc (P_1, P_2) est une base de $F : \dim(F) = 2$.

• $G = \{(x-1)(ax^2 + bx + c), a, b, c \in \mathbb{R}\} = Vect(x^2(x-1), x(x-1), x-1)$. La famille génératrice proposée est nécessairement libre, les polynômes étant tous non nuls de degrés différents.

Ainsi, $\left(x^2(x-1), x(x-1), x-1\right)$ est une base de G et $\dim(G) = 3$.

• On sait que $G \subset F + G \subset E$, donc $3 \leq \dim(F + G) \leq 4$. Si $\dim(F + G) = 3$, on aurait F + G = G, donc $F \subset G$. Or, le polynôme $P_1 = 2x^2 - x + 1 \in F$, mais $P_1(1) \neq 0$, donc $P_1 \notin G$.

On a donc nécessairement $\dim(F+G)=4$ et donc $F+G=\mathbb{R}_3[x]$.

• Par la formule de Grassmann, on sait déjà que $\dim(F+G) = \dim(F) + \dim(G) - \dim(F\cap G)$, donc $\dim(F\cap G) = 1$.

Soit $P \in \mathbb{R}_3[x]$. Alors:

$$\begin{split} P \in F \cap G &\iff \left\{ \begin{array}{l} P = a(2x^2 - x + 1) + b(x^3 + x^2 + 1), a, b \in \mathbb{R} \\ \text{et} \quad P(1) = 0 \end{array} \right. \\ &\iff \left\{ \begin{array}{l} P = a(2x^2 - x + 1) + b(x^3 + x^2 + 1), a, b \in \mathbb{R} \\ \text{et} \quad 2a + 3b = 0 \end{array} \right. \\ &\iff P = a(2x^2 - x + 1) - \frac{2}{3}a(x^3 + x^2 + 1), a \in \mathbb{R} \\ &\iff P = a\left(-\frac{2}{3}x^3 + \frac{4}{3}x^2 - x + \frac{1}{3}\right), \ a \in \mathbb{R} \end{split}$$

Finalement:

$$F \cap G = Vect\left(-\frac{2}{3}x^3 + \frac{4}{3}x^2 - x + \frac{1}{3}\right) = Vect\left(2x^3 - 4x^3 + 3x - 1\right)$$

Montrer que les applications suivantes sont linéaires, déterminer leur noyau, leur image, leur rang et leur matrice canonique

- 1. $f: \mathbb{R}_4[x] \to \mathbb{R}_4[x], P \mapsto P'$
- 2. $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x], P \mapsto P'$
- 3. $f: \mathbb{R}_3[x] \to \mathbb{R}^3, P \mapsto (P(0), P(1), P'(1)).$
- 4. $f: \mathbb{R}_3[x] \to \mathbb{R}_3[x], \ P \mapsto \left(x \mapsto P(x) + (x-2).P'(x)\right)$
 - 1. Soient P et Q dans $\mathbb{R}_4[x]$ et $\lambda \in \mathbb{R}$. Alors :

$$f(\lambda P + Q) = (\lambda P + Q)' = \lambda P' + Q' = \lambda f(P) + f(Q)$$

Ainsi, f est bien linéaire.

 $P \in \text{Ker}(f) \iff f(P) = 0 \iff P' = 0 \iff P \text{ constant. Ainsi } :$

$$Ker(f) = \mathbb{R}_0[x]$$

De plus, puisque $\mathcal{B} = (1, x, x^2, x^3, x^4)$ est la base de $\mathbb{R}_4[x]$, on a :

$$\operatorname{Im}(f) = \operatorname{Vect}(f(1), f(x), f(x^2), f(x^3), f(x^4)) = \operatorname{Vect}(0, 1, 2x, 3x^2, 4x^3) = \operatorname{Vect}(1, x, x^2, x^3) = \mathbb{R}_3[x]$$

La matrice dans la base canonique de $\mathbb{R}_4[x]$ est donnée par :

$$\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

2. f est exactement la restriction de celle de la question 1 à $\mathbb{R}_2[x]$, donc f est encore linéaire. On a encore $\text{Ker}(f) = \mathbb{R}_0[x]$ et $Im(f) = Vect(f(1), f(x), f(x^2)) = Vect(0, 1, 2x) = Vect(1, x) = \mathbb{R}_1[x].$

La matrice dans la base canonique de $\mathbb{R}_2[x]$ est :

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)$$

3. Soient P et Q dans $\mathbb{R}_3[x]$ et $\lambda \in \mathbb{R}$. Alors :

$$f(\lambda P + Q) = \left((\lambda P + Q)(0), (\lambda P + Q)(1), \lambda P + Q)'(1) \right) = \lambda \left(P(0), P(1), P'(1) \right) + \left(Q(0), Q(1), Q'(1) \right) = \lambda f(P) + f(Q)$$

Ainsi, f est bien linéaire.

Soit $P \in \mathbb{R}_3[x]$. Alors :

$$P \in \text{Ker}(f) \iff P(0) = P(1) = P'(1) = 0 \iff P = ax(x-1)^2, a \in \mathbb{R}$$

Ainsi:

$$\operatorname{Ker}(f) = \operatorname{Vect}\left(x(x-1)^2\right)$$

Par théorème du rang, $\dim(\operatorname{Im}(f)) = 3$, et donc on a $\operatorname{Im}(f) = \mathbb{R}^3$. L'application f est surjective.

Prenons la base canonique de $\mathbb{R}_3[x]$.

- f(1) = (1, 1, 0)
- f(x) = (0, 1, 1)
- $f(x^2) = (0, 1, 2)$
- $f(x^3) = (0, 1, 3)$.

La matrice dans les bases canoniques de $\mathbb{R}_3[x]$ et \mathbb{R}^3 est alors :

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)$$

4. Soient P et Q dans $\mathbb{R}_3[x]$ et $\lambda \in \mathbb{R}$. Alors :

$$f(\lambda P + Q) = \lambda P + Q + (x - 2)(\lambda P + Q)' = \lambda \left(P + (x - 2)P'\right) + \left(Q + (x - 2)Q'\right) = \lambda f(P) + f(Q)$$

Donc f est bien linéaire.

Soit $P \in \mathbb{R}_3[x]$. On a :

$$P \in \text{Ker}(f) \iff P + (x-2)P' = 0 \iff \left((x-2)P\right)' = 0 \iff (x-2)P \text{ constant} \iff P = 0$$

Ainsi, $Ker(f) = \{0\}$, l'application f est injective.

Par théorème du rang, on en déduit que $\dim(\operatorname{Im}(f)) = 4$, donc $\operatorname{Im}(f) = \mathbb{R}_3[x]$.

Prenons la base canonique de $\mathbb{R}_3[x]$.

- f(1) = 1
- f(x) = x + (x 2) = 2x 2• $f(x^2) = x^2 + (x 2)2x = 3x^2 4x$ $f(x^3) = x^3 + (x 2)3x^2 = 4x^3 6x^2$.

La matrice dans la base canonique de $\mathbb{R}_3[x]$ est alors :

$$\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 2 & -4 & 0 \\
0 & 0 & 3 & -6 \\
0 & 0 & 0 & 4
\end{array}\right)$$

Soit $M = \frac{1}{2} \begin{pmatrix} 1 & -1 & -1 \\ -2 & 0 & -2 \\ 1 & 1 & 3 \end{pmatrix}$ et soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à M.

- 1. Soit u = (1, 2, -1). Montrer que (u) est une base de Ker(f).
- 2. Soient v = (1, 0, -1) et w = (1, -1, 0). Calculer f(v) et f(w).
- 3. Montrer que $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 et donner $mat_{\mathcal{B}'}(f)$
- 4. Montrer que Im(f) = Ker(Id f).
 - 1. On a:

$$M\begin{pmatrix} 1\\2\\-1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1 & -1 & -1\\-2 & 0 & -2\\1 & 1 & 3 \end{pmatrix}\begin{pmatrix} 1\\2\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

Donc on a bien le vecteur u qui appartient à $\operatorname{Ker}(f)$, ce qui prouve déjà que $\dim(\operatorname{Ker}(f)) \ge 1$. Comme $\operatorname{Im}(f) = \operatorname{Vect}((1,-2,1),(-1,0,1),(-1,-2,3))$ et que les deux premiers vecteurs forment une famille libre (ils ne sont pas colinéaires), on a $\dim(\operatorname{Im}(f)) \ge 2$ et alors d'après le théorème du rang, $\dim(\operatorname{Ker}(f)) \le 1$. Finalement, on a exactement $\dim(\operatorname{Ker}(f)) = 1$ et ainsi $\operatorname{Ker}(f) = \operatorname{Vect}(u)$.

2. On a:

$$M\begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1&-1&-1\\-2&0&-2\\1&1&3 \end{pmatrix}\begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 2\\0\\-2 \end{pmatrix} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

On a donc f(v) = v.

De même,

$$M\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1 & -1 & -1\\ -2 & 0 & -2\\ 1 & 1 & 3 \end{pmatrix}\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 2\\ -2\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$$

On a donc également f(w) = w.

3. Pour vérifier que \mathcal{B}' est une base de \mathbb{R}^3 , il suffit de vérifier que (u, v, w) est libre (elle est de cardinal 3). On a :

$$au + bv + cw = 0 \Longleftrightarrow \begin{cases} a + b + c = 0 \\ 2a - c = 0 \\ -a - b = 0 \end{cases} \Longleftrightarrow a = b = c = 0$$

Ainsi famille \mathcal{B}' est libre, et est donc une base de \mathbb{R}^3 , et dans cette base :

$$mat_{\mathcal{B}'}(f) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

4. On a montré que v = f(v) et w = f(w), ce qui prouve que $v \in \text{Im}(f)$ et $w \in \text{Im}(f)$. La famille (v, w) étant libre (car extraite d'une base), et Im(f) étant de dimension 2 (car le rang est égal à 2), on a donc :

$$Im(f) = Vect(v, w)$$

Puisque v - f(v) = 0, et w - f(w) = 0, on a bien que $v \in \text{Ker}(Id - f)$ et $w \in \text{Ker}(Id - f)$, et ainsi par stabilité par combinaison linéaire : $\text{Im}(f) = Vect(v, w) \subset \text{Ker}(Id - f)$.

De plus, soit $x \in \text{Ker}(Id - f)$. On a alors (Id - f)(x) = 0, soit $x = f(x) \in \text{Im}(f)$, ce qui prouve que $\text{Ker}(Id - f) \subset \text{Im}(f)$.

Par double inclusion, on a finalement que Im(f) = Ker(Id - f).

On pose pour tout $P \in \mathbb{R}_3[x]$, f(P) = P(x+1).

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}_3[x])$ et déterminer la matrice A de f dans la base canonique de $\mathbb{R}_3[x]$.
- 2. Montrer que A est inversible et déterminer A^{-1} .
 - 1. Soient P et Q deux polynômes de $\mathbb{R}_3[x]$, et $\lambda \in \mathbb{R}$. On a :

$$f(\lambda P + Q) = (\lambda P + Q)(x+1) = \lambda P(x+1) + Q(x+1) = \lambda f(P) + f(Q)$$

Ainsi, f est bien une application linéaire.

De plus, si $P \in \mathbb{R}_3[x]$, alors P(x+1) est encore un polynôme de $\mathbb{R}_3[x]$, donc f est bien un endomorphisme de $\mathbb{R}_3[x]$.

Écrivons la matrice de f dans la base canonique.

- f(1) = 1
- f(x) = x + 1
- $f(x^2) = (x+1)^2 = x^2 + 2x + 1$ $f(x^3) = (x+1)^3 = x^3 + 3x^2 + 3x + 1$

La matrice A de f dans la base canonique est donc :

$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Remarquons que c'est en fait le début du triangle de Pascal.

2. La matrice A est triangulaire sans zéro sur la diagonale, donc est bien inversible.

Remarquons que cela traduit également le fait que f est un isomorphisme.

Pour déterminer A^{-1} , on peut plutôt regarder l'application f^{-1} . Ici, f^{-1} est évident, c'est :

$$f^{-1}: \begin{array}{ccc} \mathbb{R}_3[x] & \longrightarrow & \mathbb{R}_3[x] \\ Q & \longmapsto & Q(x-1) \end{array}$$

- $f^{-1}(1) = 1$ $f^{-1}(x) = x 1$ $f^{-1}(x^2) = (x 1)^2 = x^2 2x + 1$ $f^{-1}(x^3) = (x 1)^3 = x^3 3x^2 + 3x 1$

et donc A^{-1} étant la matrice de f^{-1} dans la base canonique, on a :

$$A^{-1} = \left(\begin{array}{cccc} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Soit E un espace vectoriel de dimension 4 et $\mathcal{B} = (e_1, e_2, e_3, e_4)$ une de ses bases. On définit l'endomorphisme φ de \mathbb{R}^4 par $\forall i \in \{1, 2, 3\}, \varphi(e_i) = e_{i+1}$ et $\varphi(e_4) = e_1$.

- 1. Montrer que φ est un automorphisme et donner $mat_{\mathcal{B}}(\varphi) = A$.
- 2. Déteminer φ^{-1} et en déduire la valeur de A^{-1} .
 - 1. On a $\varphi(\mathcal{B}) = (\varphi(e_1), \varphi(e_2), \varphi(e_3), \varphi(e_4)) = (e_2, e_3, e_4, e_1).$ φ envoyant une base de \mathbb{R}^4 sur une base de \mathbb{R}^4 , c'est bien un automorphisme, et sa matrice dans la base \mathcal{B} est :

$$A = mat_{\mathcal{B}}(\varphi) = \begin{pmatrix} 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2. On a directement:

$$\varphi^{-1}(e_1) = e_4, \quad \varphi^{-1}(e_2) = e_1, \quad \varphi^{-1}(e_3) = e_2, \quad \varphi^{-1}(e_4) = e_3$$

et la matrice de l'application φ^{-1} dans la base $\mathcal B$ (qui est alors la matrice A^{-1}) est finalement :

$$A^{-1} = mat_{\mathcal{B}}(\varphi^{-1}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Soit E de dimension n et $f \in \mathcal{L}(E)$. Soit g la restriction de f à $Ker(f^2)$.

- 1. Montrer que $\operatorname{Im}(g) \subset \operatorname{Im}(f) \cap \operatorname{Ker}(f)$
- 2. Montrer que $\operatorname{Ker}(g) = \operatorname{Ker}(f)$ et que $rg(g) \leqslant rg(f)$.
- 3. Montrer que $\dim(\operatorname{Ker}(f^2)) \leq 2\dim(\operatorname{Ker}(f))$.
 - 1. Par définition, on a:

$$g: \begin{array}{ccc} \operatorname{Ker}(f^2) & \longrightarrow E \\ x & \longmapsto f(x) \end{array}$$

Soit $u \in \text{Im}(g)$.

Alors il existe $x \in \text{Ker}(f^2)$ tel que u = g(x).

Or, u = g(x) = f(x), donc $u \in \text{Im}(f)$.

De plus, $f(u) = f(g(x)) = f(f(x)) = f^2(x) = 0$ (puisque $x \in \text{Ker}(f^2)$) donc $u \in \text{Ker}(f)$.

Finalement:

$$\operatorname{Im}(g) \subset \operatorname{Im}(f) \cap \operatorname{Ker}(f)$$

2. Si $x \in \text{Ker}(g)$, on a g(x) = 0, et donc f(x) = 0, donc $x \in \text{Ker}(f)$.

Réciproquement, si $x \in \text{Ker}(f)$, alors $x \in \text{Ker}(f^2)$ (car $\text{Ker}(f) \subset \text{Ker}(f^2)$), donc g(x) a un sens, et alors g(x) = f(x) = 0, donc $x \in \text{Ker}(g)$.

Par double inclusion, on a donc montré que :

$$Ker(g) = Ker(f)$$

De plus, d'après la question 1, on a montré que :

$$\operatorname{Im}(g) \subset \operatorname{Im}(f)$$

donc $rg(g) \leq rg(f)$.

3. D'après le théorème du rang pour l'application g, on a :

$$\dim(\operatorname{Ker}(f^2)) = \dim(\operatorname{Ker}(g)) + \dim(\operatorname{Im}(g)) = \dim(\operatorname{Ker}(f)) + \operatorname{rg}(g)$$

Or, on a $\operatorname{Im}(g) \subset \operatorname{Ker}(f)$, donc $\operatorname{rg}(g) \leq \dim(\operatorname{Ker}(f))$. On a donc :

$$\dim(\operatorname{Ker}(f^2)) = \dim(\operatorname{Ker}(f)) + \operatorname{rg}(g) \leqslant \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(f)) = 2\dim(\operatorname{Ker}(f))$$

Soit A la matrice d'ordre 4 qui comporte des 1 sur sa diagonale, sur sa première colonne, sur sa dernière colonne, et des 0 partout ailleurs.

- 1. La matrice A est-elle inversible? Préciser son rang et une base \mathcal{B} de $\mathrm{Im}(A)$.
- 2. Soit f l'endomorphisme de \mathbb{R}^4 canoniquement associé à A, et soit g la restriction de f à Im(f). Vérifier que g est un endomorphisme de Im(f). Préciser sa matrice dans la base \mathcal{B} . L'endomorphisme g est-il bijectif?

1.
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
.

Puisque $C_1 = C_4$, la matrice A n'est pas inversible.

On a $\text{Im}(A) = Vect(C_1, C_2, C_3) = 3$ puisque les trois premières colonnes forment une famille libre (on a (C_2, C_3) est clairement libre et $C_1 \notin Vect(C_2, C_3)$). Ainsi, une base \mathcal{B} de Im(A) est :

$$(u, v, w)$$
 avec $u = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $w = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

2. Puisque g est la restriction d'une application linéaire, g est bien linéaire. Et puisque $\forall x \in \text{Im}(f)$, $g(x) = f(x) \in \text{Im}(f)$, g est bien un endomorphisme de Im(f).

Ici,
$$g(u) = f(u) = \begin{pmatrix} 2 \\ 3 \\ 3 \\ 2 \end{pmatrix} = 2u + v + w, g(v) = f(v) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = v \text{ et } g(w) = f(w) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = w.$$

Ainsi, la matrice de g dans la base \mathcal{B} est :

$$M = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

La matrice M est triangulaire sans zéro sur la diagonale, donc M est inversible, donc g est bijectif.

Soit A la matrice d'ordre 4 qui comporte des 1 sur sa première colonne, sur sa dernière colonne, sur sa dernière ligne et des 0 partout ailleurs.

- 1. La matrice A est-elle inversible? Préciser son rang et une base \mathcal{B} de $\mathrm{Im}(A)$.
- 2. Soit f l'endomorphisme de \mathbb{R}^4 canoniquement associé à A, et soit g la restriction de f à $\mathrm{Im}(f)$. Vérifier que g est un endomorphisme de Im(f). Préciser sa matrice dans la base \mathcal{B} . L'endomorphisme g est-il bijectif?

1.
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
.

Puisque $C_1 = C_4$, la matrice A n'est pas inversible.

On a $\operatorname{Im}(A) = \operatorname{Vect}(C_1, C_2, C_3, C_4) = \operatorname{Vect}(C_1, C_2) = 2$ puisque $C_2 = C_3$ et $C_1 = C_4$. De plus, (C_1, C_2) libre car C_1, C_2 non colinéaires. Ainsi, une base \mathcal{B} de $\mathrm{Im}(A)$ est :

$$(u,v)$$
 avec $u = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$, $v = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$

2. Puisque g est la restriction d'une application linéaire, g est bien linéaire. Et puisque $\forall x \in \text{Im}(f)$, $g(x) = f(x) \in \text{Im}(f), g$ est bien un endomorphisme de Im(f).

Ici,
$$g(u) = f(u) = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 4 \end{pmatrix} = 2u + 2v \text{ et } g(v) = f(v) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = u.$$

Ainsi, la matrice de g dans la base \mathcal{B} est :

$$M = \left(\begin{array}{cc} 2 & 1\\ 2 & 0 \end{array}\right)$$

La matrice M est de rang 2 (les colonnes sont non proportionnelles) donc M est inversible, donc g est bijectif.