Hypokhâgne B/L Khôlles Semaine 18

Applications linéaires. Dérivation

Questions de cours

K18.1 Cécile

Soit $f \in \mathcal{L}(E, F)$.

Montrer que Im(f) est un sous-espace vectoriel de F.

K18.2 Adèle, Alexandre, Damien, Manon P.,

Marie, Marion

Soit $f \in \mathcal{L}(E, F)$.

Montrer que f est injective si et seulement si $Ker(f) = \{\overrightarrow{0_E}\}$

K18.3 Capucine, Manon, Quentin P.

Soit $f \in \mathcal{L}(E, F)$ injective.

Montrer que si $(\overrightarrow{u_1}, \overrightarrow{u_2}, \dots, \overrightarrow{u_n})$ est une famille libre de E, alors $(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n}))$ est une famille libre de F.

K18.4 Juliette, Mathilde L., Matthieu P.

Soit $f \in \mathcal{L}(E, F)$ avec $\dim(E) = \dim(F)$

Montrer que f injective si et seulement si f surjective.

K18.5 Mathilde B.

Théorème Limite de la Dérivée

K18.6 Camille, Claire, Constance Be., Martin, Mathilde B.

Théorème de Rolle

K18.7 Inès, Jean-Damien, Juliette

Théorème et Inégalité des Accroissements Finis

K18.8 Manon V.

Fonctions convexes : définitions, interprétation graphique.

Applications linéaires

K18.9 Adèle, Cécile, Inès, Marion

$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \longmapsto & (x+y+z,x+y+2z) \end{array}$$

Montrer que f est une application linéaire. Déterminer (dans l'ordre de votre choix) son noyau, son image et son rang.

K18.10 Alexandre, Claire, Constance Be., Jean-Damien

$$f: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ (x,y) & \longmapsto & (2x-y,x+y,y-2x) \end{array}$$

Montrer que f est une application linéaire. Déterminer (dans l'ordre de votre choix) son noyau, son image et son rang.

K18.11 Capucine, Marie, Quentin P.

$$f: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x+y,2x-y) \end{array}$$

Montrer que f est une application linéaire bijective.

K18.12 Damien, Manon P.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E. Montrer que :

$$\operatorname{Ker}(g) \cap \operatorname{Im}(f) = f\left(\operatorname{Ker}(g \circ f)\right)$$

K18.13 Mathilde L.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E. Montrer que :

$$g^{-1}(\operatorname{Im}(g\circ f))=\operatorname{Ker}(g)+\operatorname{Im}(f)$$

K18.14 Camille, Martin

Soient E, F, G des \mathbb{K} -espaces vectoriels. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Montrer que :

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker}(f) \iff \operatorname{Ker}(g) \cap \operatorname{Im}(f) = \{\overrightarrow{0_F}\}\$$

Hypokhâgne B/L Khôlles Semaine 18

K18.15 Claire, Constance Be., Jean-Damien

Soit E un espace vectoriel de dimension finie, $\dim(E) = n$. Soit $f \in \mathcal{L}(E)$. Montrer que :

$$\operatorname{Ker}(f) = \operatorname{Ker}(f^2) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2)$$

K18.16 Mathilde B.

Soit E un espace vectoriel et soit $p \in \mathcal{L}(E)$ tel que $p \circ p = p$.

- 1. Montrer que $y \in \text{Im}(p) \iff p(y) = y$
- 2. Montrer que Im(p) et Ker(p) sont supplémentaires dans E.

K18.17 Damien

On rappelle qu'un projecteur de E est un endomorphisme f de E qui vérifie $f \circ f = f$.

Soient p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer que $E = \operatorname{Ker}(p) \oplus \operatorname{Im}(p)$
- 2. Montrer que $\operatorname{Ker}(p) = \operatorname{Ker}(q) \iff p \circ q = p$ et $q \circ p = q$

K18.18 Matthieu P.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E. On suppose que $f \circ g = Id$.

- 1. Montrer que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$
- 2. Montrer que $Ker(g \circ f) = Ker(f)$.
- 3. Soit p un projecteur de E, i.e. qui vérifie $p \circ p = p$. Montrer que : $E = \text{Ker}(p) \oplus \text{Im}(p)$.
- 4. En déduire que $E = \text{Ker}(f) \oplus \text{Im}(g)$.

K18.19 Manon V.

Soit $\varphi : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par $\varphi(P) = P + P' + P''$.

- 1. Montrer que φ est une application linéaire et déterminer son noyau.
- 2. Montrer que pour tout $Q \in \mathbb{R}_n[X]$, il existe un unique $P \in \mathbb{R}_n[X]$ tel que Q = P + P' + P''.

K18.20 Jean-Damien

Soit E un espace vectoriel et soit $f \in \mathcal{L}(E)$ tel que $f^2 = 3f - 2Id_E$.

- 1. Montrer que f est un isomorphisme de E
- 2. Montrer que $E = \text{Ker}(f 2Id_E) \oplus \text{Ker}(f Id)$.

K18.21 Camille, Martin

Soit E un espace vectoriel et soit $f \in \mathcal{L}(E)$ tel que $f^2 = -f$. Montrer que :

$$E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$$

K18.22 Juliette

Soit E un espace vectoriel et soit $f \in \mathcal{L}(E)$ tel que $f^2 - 4Id_E = 0$.

- 1. Montrer que $E = \text{Ker}(f-2Id_E) \oplus \text{Ker}(f+2Id_E)$.
- 2. Que dire de $\operatorname{Im}(f 2Id_E)$ et $\operatorname{Im}(f + 2Id_E)$?

K18.23 Mathilde B.

Soit E un espace vectoriel et soit $f \in \mathcal{L}(E)$ tel que $f^2 + f - 6Id_E = 0$.

- 1. Déterminer $\alpha \in \mathbb{R}$ tel que $(\alpha(f 2Id_E))^2 = \alpha(f 2Id_E)$.
- 2. Montrer que $E = \text{Ker}(f 2Id_E) \oplus \text{Ker}(f + 3Id_E)$ par deux méthodes différentes, dont l'une utilisera l'exercice K18.13.

Dérivation sur un intervalle

K18.24 Cécile, Constance Be., Inès, Marion

$$f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & & \\ f: & & \\ x & \longmapsto & \begin{cases} \exp\left(-\frac{1}{x}\right) & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$$

Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .