Hypokhâgne B/L Khôlles Semaine 17

Espaces vectoriels. Applications linéaires.

Questions de cours

K17.1 Emma, Nicolas

Soit $f \in \mathcal{L}(E, F)$.

Montrer que Ker(f) est un sous-espace vectoriel de E.

K17.2 Anastasia, Caroline, Constance Bo., Juliane, Mathilde M.

Soit $f \in \mathcal{L}(E, F)$.

Montrer que f est injective si et seulement si $Ker(f) = \{\overrightarrow{0_E}\}\$

K17.3 Justine, Quentin F., Théophile

Soit $f \in \mathcal{L}(E, F)$.

Montrer que Im(f) est un sous-espace vectoriel de F.

K17.4 Alice, Léa

Soit $f \in \mathcal{L}(E, F)$ avec $\dim(E) = \dim(F)$

Montrer que f injective si et seulement si f surjective.

K17.5 Matthieu B.

Soit $f \in \mathcal{L}(E, F)$ injective.

Montrer que si $(\overrightarrow{u_1}, \overrightarrow{u_2}, \dots, \overrightarrow{u_n})$ est une famille libre de E, alors $(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n}))$ est une famille libre de F.

Exercices

K17.6 Caroline, Mathilde M.

$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (2x,y+z,2x+5y-z) \end{array}$$

- 1. Montrer que f est linéaire.
- 2. Déterminer son noyau, son image et son rang.

K17.7 Léa

$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z) & \longmapsto & (3x - 2y, 2x - 4z, y - 3z) \end{array}$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 .
- 2. Déterminer Ker(f), Im(f), et donner une base de chacun de ces espaces.

K17.8 Théophile

$$f: \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}_2[X] \\ P & \longmapsto & P(X) + (X-1)P'(X) \end{array}$$

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Montrer que f est bijectif.

K17.9 Alice

$$\varphi: \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}_n[X] \\ P & \longmapsto & P(X) + (1 - X)P'(X) \end{array}$$

- 1. Montrer que φ est une application linéaire.
- 2. Quel est le degré de $\varphi(X^p)$? Déterminer l'image et le noyau de φ .
- 3. Soit $Q \in \text{Im}(\varphi)$. Montrer qu'il existe un unique $P \in \mathbb{R}_n[X]$ tel que $Q = \varphi(P)$, avec P(0) = P'(0) = 0.

K17.10 Caroline, Mathilde M.

$$f: \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}_2[X] \\ P & \longmapsto & f(P) \end{array}$$

tel que f(P(X)) = P(X+1) - P(X).

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. L'application f est-elle bijective? Déterminer Ker(f).

| K17.11 | Anastasia

Soit $\varphi : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par $\varphi(P) = P + P' + P''$

- 1. Montrer que φ est une application linéaire et déterminer son noyau.
- 2. Montrer que pour tout $Q \in \mathbb{R}_n[X]$, il existe un unique $P \in \mathbb{R}_n[X]$ tel que Q = P + P' + P''.

Hypokhâgne B/L Khôlles Semaine 17

K17.12 Léa

$$f: \begin{pmatrix} \mathcal{M}_2(\mathbb{R}) & \longrightarrow & \mathcal{M}_2(\mathbb{R}) \\ a & c \\ b & d \end{pmatrix} \longmapsto \begin{pmatrix} a-b & a-c \\ d & d \end{pmatrix}$$

- 1. Montrer que f est linéaire.
- 2. Déterminer une base de Im(f). L'application f est-elle surjective?
- 3. Déterminer Ker(f).

K17.13 Matthieu B.

Soit E un espace vectoriel et soit $f \in \mathcal{L}(E)$ tel que $f^2 - 4Id_E = 0$.

- 1. Montrer que $\operatorname{Im}(f-2Id_E) \subset \operatorname{Ker}(f+2Id_E)$ et $\operatorname{Im}(f+2Id_E) \subset \operatorname{Ker}(f-2Id_E)$.
- 2. Montrer que $E = \text{Ker}(f-2Id_E) \oplus \text{Ker}(f+2Id_E)$.
- 3. Que dire de $\operatorname{Im}(f 2Id_E)$ et $\operatorname{Im}(f + 2Id_E)$?

K17.14 Anastasia

Soit E un espace vectoriel et soit $f \in \mathcal{L}(E)$ tel que $f^2 + f - 2Id_E = 0$.

- 1. Montrer que $\operatorname{Im}(f Id_E) \subset \operatorname{Ker}(f + 2Id_E)$ et $\operatorname{Im}(f + 2Id_E) \subset \operatorname{Ker}(f Id_E)$.
- 2. Montrer que $E = \text{Ker}(f Id_E) \oplus \text{Ker}(f + 2Id_E)$.
- 3. Que dire de $\operatorname{Im}(f Id_E)$ et $\operatorname{Im}(f + 2Id_E)$?

K17.15 Constance Bo., Juliane

Soit T de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$, qui à M associe tM .

- 1. Montrer que T est linéaire.
- 2. Montrer que $E = \text{Ker}(T Id) \oplus \text{Ker}(T + Id)$

K17.16 Justine

$$f: \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & {}^tM - \alpha M \end{array}$$

où α est un réel fixé.

- 1. Montrer que f est linéaire.
- 2. Décrire le noyau de f suivant les valeurs de α

K17.17 Alice

Soit E un espace vectoriel et soit $p \in \mathcal{L}(E)$ tel que $p \circ p = p$.

- 1. Montrer que $y \in \text{Im}(p) \iff p(y) = y$
- 2. Montrer que $\operatorname{Im}(p)$ et $\operatorname{Ker}(p)$ sont supplémentaires dans E.

K17.18 Emma

Soit E un espace vectoriel et soit $f \in \mathcal{L}(E)$ une application linéaire.

Pour $k \in \mathbb{N}^*$, on note $f^k = f \circ f \circ \cdots \circ f$ la composée k-fois de f.

- 1. Montrer que, $\forall k \ge 1$, f^k est linéaire.
- 2. On prend $E = \mathbb{R}_3[X]$ et soit φ l'application qui à P(X) associe P(X+1) P(X).
 - (a) Montrer que φ est linéaire.
 - (b) Montrer que $\varphi^4 = 0$
 - (c) Déterminer $Ker(\varphi)$
 - (d) Montrer que $Id \varphi$ est inversible, d'inverse $Id + f + f^2 + f^3$.

K17.19 Nicolas

Soit A un polynôme de degré d. Soit φ l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$ qui à P associe son reste par la division euclidienne par A.

- 1. Montrer que φ est linéaire.
- 2. Décrire $\operatorname{Im}(\varphi)$ et $\operatorname{Ker}(\varphi)$ suivant les valeurs relatives de d et n.
- 3. Trouver $\varphi(X^n)$ lorsque $A(X) = X^2 4$.

K17.20 Quentin F.

Soit E un espace vectoriel de dimension finie et soit $f \in \mathcal{L}(E)$ une application linéaire.

On note $f^k = f \circ f \circ \cdots \circ f$ la composée k-fois de f pour $k \geqslant 1$.

- 1. Montrer que, $\forall k \geq 1$, f^k est linéaire.
- 2. Montrer que $\forall k \geqslant 1$,

$$\operatorname{Ker}(f^k) \subset \operatorname{Ker}(f^{k+1})$$

et

$$\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$$

- 3. On suppose qu'il existe $k \in \mathbb{N}$ tel que $\operatorname{Ker}(f^k) = \operatorname{Ker}(f^{k+1})$.
 - Montrer que pour tout $m \ge k$, on a $Ker(f^m) = Ker(f^k)$ et $Im(f^m) = Im(f^k)$
- 4. Soit f vérifiant : $\exists p \ge 2$, $f^{p-1} \ne 0$ et $f^p = 0$. Montrer que $p \le \dim(E)$

K17.21 Juliane

Soit $f: E \to E$ linéaire, où E est un espace vectoriel. On suppose que $\forall \overrightarrow{x} \in E$, la famille $(\overrightarrow{x}, f(\overrightarrow{x}))$ est liée. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que

$$\forall \overrightarrow{x} \in E, \ f(\overrightarrow{x}) = \lambda \overrightarrow{x}$$