Chapitre 13 - Dérivation sur un intervalle

1 - Fonctions de classe \mathcal{C}^n

- Ensemble des fonctions de I dans \mathbb{R} : notation \mathbb{R}^I
- Fonctions de classe C^0 , C^1 , C^n , C^{∞}
- Exemples : dérivée n-ième de $x \mapsto x^k$, de $x \mapsto \ln(x)$
- Exemples : dérivée n-ième de $x \mapsto e^x$, $x \mapsto \cos(x)$, $x \mapsto \sin(x)$
- \bullet Opérations dans $\mathcal{C}^n(I)$: structure de $\mathbb{R}\text{-esp.}$ vectoriel
- Produit de fonctions de classe C^n : Formule de Leibniz.
- Composition dans C^n , Fonctions bijectives de classe C^n .

2 - Théorèmes de dérivation sur un intervalle

- Théorème Limite de la Dérivée (théorème de prolongement C^1).
- Rappels : maximum/minimum/extremum local d'une fonction
- Théorème : condition nécessaire d'extremum local
- Théorème de Rolle. Interprétation graphique.
- Théorème des Accroissements Finis. Interprétation graphique.
- Inégalité des Accroissements Finis (deux formes).
- f est croissante sur $I \iff f'$ est positive sur I
- f est décroissante sur $I \iff f'$ est négative sur I
- f est constante sur $I \iff f'$ est nulle sur I
- ullet CNS pour que f soit strictement croissante, stt. décroissante

3 - Convexité d'une fonction

- On se limite au cas des fonctions de classe C^2 .
- Définitions à partir de la position des tangentes, de la variation de f', du signe de f''.
- Point d'inflexion d'une courbe.
- exp est convexe : $\forall x \in \mathbb{R}, e^x \geqslant x+1$
- ln est concave : $\forall x > 0$, $\ln(x) \leqslant x 1$, $\forall h > -1$, $\ln(1 + h) \leqslant h$

Chapitre 14 - Convergence des suites

1 - Rappels : suites usuelles

- Rappels : suites monotones, majorées/minorées, bornées
- Rappels : suites arithmético-géométriques
- Nouveauté : suites récurrentes linéaires doubles

2 - Suites convergentes

- Limite d'une suite : avec les quantificateurs
- Opérations sur les limites, formes indéterminées
- Composition des limites par une fonction
- Limites usuelles (pour $u_n \to 0$ ou croissances comparées)
- Limites et inégalités, théorèmes d'encadrement
- Limites et valeurs absolues
- → le reste du chapitre sera au programme de la Khôlle 11

Démonstrations exigibles :

- Théorème de Rolle.
- f est croissante sur $I \iff f'$ positive sur I
- Produit d'une suite bornée par une suite convergeant vers 0

Savoirs faire exigibles:

- Connaître les dérivées usuelles sans faute!
- Savoir calculer des dérivées n-ièmes.
- Savoir énoncer parfaitement les Théorèmes de Dérivabilité : bonnes hypothèses, bonnes conclusions.
- Savoir montrer qu'une fonction "par morceaux" est de classe \mathcal{C}^1
- Savoir appliquer l'Inégalité des Accroissements Finis.
- Montrer qu'une suite est croissante/décroissante
- Connaître parfaitement les suites arithmético-géométriques
- Connaître la méthode pour les suites récurrentes linéaires doubles.
- Savoir traduire $u_n \xrightarrow[n \to +\infty]{} \ell$ ou $u_n \xrightarrow[n \to +\infty]{} +\infty$ ou $u_n \xrightarrow[n \to +\infty]{} -\infty$
- Savoir passer à la limite dans une inégalité
- Savoir utiliser les théorèmes de comparaison, d'encadrement.