Khôlle n°17

Question de cours

Valeur et démonstration de $\sum_{k=0}^{n} q^k$

Exercice 0

Déterminer u_n en fonction de n pour la suite

$$(u_n)$$
 définie par :
$$\begin{cases} u_0 = 5, \ u_1 = 2 \\ \forall n \in \mathbb{N}, u_{n+2} = \frac{2}{3}u_{n+1} - \frac{2}{9}u_n \end{cases}$$

Exercice 1

Soit u la suite définie par $u_0 = 0$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{u_n + 2}$$

- 1. Montrer que $\forall n \in \mathbb{N}, u_n \geqslant 0$
- 2. Prouver, en utilisant le théorème des accroissements finis, que

$$|u_{n+1} - 2| \leqslant \frac{1}{2} |u_n - 2|$$

3. En déduire que u converge et étudier sa limite.

Exercice 2:

Pour
$$n \ge 1$$
, on pose $u_n = \sum_{k=0}^{n-1} \frac{2}{(4k-1)(4k+3)}$ et $v_n = u_n + \frac{1}{4n-1}$.

- 1. Montrer que les suites (u_n) et (v_n) sont adjacentes.
- 2. En déduire qu'il existe un réel ℓ tel que : $\forall n \geq 1, \ u_n \leq \ell \leq v_n$.
- 3. Montrer alors que pour tout $n \ge 1$, on a : $|\ell u_n| \le \frac{1}{4n-1}$.

Exercice 3

On se donne
$$(u_n)_{n\in\mathbb{N}}$$
 et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles.

On suppose que
$$u_n + 2v_n \underset{n \to \infty}{\to} 0$$
 et que $2u_n - 3v_n \underset{n \to \infty}{\to} 0$.

Que dire de
$$(u_n)_{n\in\mathbb{N}}$$
 et $(v_n)_{n\in\mathbb{N}}$?