1 Montrer que
$$F: x \mapsto \ln\left(x + \sqrt{1 + x^2}\right)$$
 est une primitive sur \mathbb{R} de la fonction $f: x \mapsto \frac{1}{\sqrt{1 + x^2}}$.

Il faut montrer que:

- F est dérivable sur \mathbb{R}
- $\forall x \in \mathbb{R}, \ F'(x) = f(x)$

Déjà, montrons que F est définie et dérivable sur \mathbb{R} .

$$F(x) \text{ existe } \iff \sqrt{1+x^2} > -x \iff \begin{cases} x \geqslant 0 \\ \text{ou} \\ x \leqslant 0 \text{ et } 1+x^2 > x^2 \end{cases} : \text{ tjs vrai}$$

F est donc bien définie sur \mathbb{R} . De plus, par composition, F est dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \ F'(x) = \frac{1 + \frac{2x}{2\sqrt{1+x^2}}}{x + \sqrt{1+x^2}} = \frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2} \left(x + \sqrt{1+x^2}\right)} = \frac{1}{\sqrt{1+x^2}} = f(x)$$

F est donc bien une primitive de f sur \mathbb{R} .

Déterminer la primitive de la fonction $x \mapsto \frac{1}{2(x-1)}$ définie sur $]1, +\infty[$ qui s'annule en 3.

La primitive de $x\mapsto \frac{1}{2(x-1)}$ sur]1, $+\infty$ [qui s'annule en 3 est exactement la fonction g définie par :

$$\forall x > 1, \ g(x) = \int_3^x \frac{1}{2(t-1)} dt = \left[\frac{1}{2} \ln(t-1) \right]_3^x = \frac{1}{2} \ln(x-1) - \frac{1}{2} \ln(2) = \frac{1}{2} \ln\left(\frac{x-1}{2}\right) = \ln\left(\sqrt{\frac{x-1}{2}}\right)$$

3 Calculer les intégrales suivantes :

1.
$$\int_{-2}^{4} (x^3 + x - 2) dx$$

2.
$$\int_{3}^{11} \sqrt{2x+3} dx$$

$$3. \int_2^4 \ln(2t)dt$$

$$4. \int_0^2 \frac{2x-1}{x^2-x+1} dx$$

$$5. \int_{-1}^{1} \frac{t}{\sqrt[3]{t^2 + 2}} dt$$

$$6. \int_0^1 \frac{t^4}{\sqrt{t^5 + 3}} dt$$

$$7. \int_{1}^{2} \frac{e^{\sqrt{t}}}{\sqrt{t}} dt$$

$$8. \int_{-1/3}^{0} 2^{3x+1} dx$$

9.
$$\int_{1}^{e} \frac{(\ln t)^{\alpha}}{t} dt \text{ pour } \alpha > 0.$$

10.
$$\int_0^2 |x^3 - x^2 + x - 1| dx$$

11.
$$\int_0^5 t|t^2 - 1|dt$$

12.
$$\int_0^5 \frac{t-1}{|t^2 - 2t| + 1} dt$$

13.
$$\int_0^1 \frac{1}{1+t^2} dt$$

14.
$$\int_{1}^{e} \ln(t) dt$$

15.
$$\int_0^1 \operatorname{Arctan}(t) dt.$$

16.
$$\int_0^1 x \operatorname{Arctan}(x) dx.$$

17.
$$\int_0^{\pi/2} x^2 \sin(2x) dx.$$

18.
$$\int_0^1 (x^2 - x + 1)e^x dx.$$

19.
$$\int_0^{\pi/2} \sin(x) \cos^3(x) dx$$
.

20.
$$\int_0^{\pi/2} \sin^2(x) dx$$
.

1.
$$\int_{2}^{4} (x^{3} + x - 2)dx = \left[\frac{x^{4}}{4} + \frac{x^{2}}{2} - 2x \right]_{2}^{4} = (64 + 8 - 8) - (4 + 2 + 4) = \boxed{54}$$

2.

$$\int_{3}^{11} \sqrt{2x+3} dx = \frac{1}{2} \int_{3}^{11} 2(2x+3)^{1/2} dx = \frac{1}{2} \left[\frac{2}{3} (2x+3)^{3/2} \right]_{3}^{11} = \frac{1}{3} (25^{3/2} - 9^{3/2}) = \frac{1}{3} (125 - 27) = \boxed{\frac{98}{3}}$$

ou avec un changement de variable t=2x+3 (dt=2dx),

$$\int_{3}^{11} \sqrt{2x+3} dx = \frac{1}{2} \int_{3}^{11} \sqrt{2x+3} \left(2dx \right) = \frac{1}{2} \int_{9}^{25} \left(\sqrt{t} \right) dt = \frac{1}{2} \left[\frac{2}{3} t^{3/2} \right]_{9}^{25} = \frac{1}{3} (25^{3/2} - 9^{3/2}) = \boxed{\frac{98}{3}}$$

3.

$$\int_{2}^{4} \ln(2t) dt = \int_{2}^{4} (\ln 2 + \ln t) dt = \left[\ln(2)t + t \ln(t) - t \right]_{2}^{4} = 4 \ln 2 + 4 \ln 4 - 4 - 2 \ln 2 - 2 \ln 2 + 2 = \boxed{8 \ln(2) - 2 \ln 2 + 2 + 2 \ln 2 - 2 \ln 2 + 2} = \boxed{8 \ln(2) - 2 \ln 2 + 2 \ln 2 - 2 \ln 2 + 2 + 2 \ln 2 - 2 \ln 2 + 2} = \boxed{8 \ln(2) - 2 \ln 2 + 2 \ln 2 - 2 \ln 2$$

ou avec un changement de variable $x=2t\ (dx=2dt),$

$$\int_{2}^{4} \ln(2t)dt = \int_{4}^{8} \ln(x)\frac{dx}{2} = \frac{1}{2} \left[x \ln(x) - x \right]_{4}^{8} = \frac{1}{2} \left(8 \ln(8) - 8 - 4 \ln(4) + 4 \right) = \boxed{8 \ln(2) - 2}$$

4.

$$\int_0^2 \frac{2x-1}{x^2-x+1} dx = \left[\ln(|x^2-x+1|) \right]_0^2 = \ln(3) - \ln(1) = \left[\ln(3) \right]$$

ou avec un changement de variable $t = x^2 - x + 1$, on a dt = (2x - 1)dx, donc :

$$\int_0^2 \frac{1}{x^2 - x + 1} (2x - 1) dx = \int_1^3 \frac{1}{t} dt = \left[\ln(|t|) \right]_1^3 = \ln(3) - \ln(1) = \boxed{\ln(3)}$$

5. Sans calcul:

$$\int_{-1}^{1} \frac{t}{\sqrt[3]{t^2 + 2}} dt = \boxed{0} \quad \text{puisque la fonction } t \mapsto \frac{t}{\sqrt[3]{t^2 + 2}} \text{ est impaire sur } [-1, 1]!$$

ou avec calcul:

$$\int_{-1}^{1} t \left(t^2 + 2 \right)^{-\frac{1}{3}} dt = \frac{1}{2} \left[\frac{3}{2} (t^2 + 2)^{\frac{2}{3}} \right]_{-1}^{1} = \frac{3}{4} \left(3^{2/3} - 3^{2/3} \right) = 0$$

6.

$$\int_0^1 \frac{t^4}{\sqrt{t^5 + 3}} dt = \frac{2}{5} \int_0^1 \frac{5t^4}{2\sqrt{t^5 + 3}} dt = \frac{2}{5} \left[\sqrt{t^5 + 3} \right]_0^1 = \left[\frac{2}{5} (2 - \sqrt{3}) \right]$$

7.

$$\int_{1}^{2} \frac{e^{\sqrt{t}}}{\sqrt{t}} dt = 2 \int_{1}^{2} \left(\frac{1}{2\sqrt{t}}\right) e^{\sqrt{t}} dt = 2 \left[e^{\sqrt{t}}\right]_{1}^{2} = \boxed{2(e^{\sqrt{2}} - e)}$$

8.

$$\int_{-1/3}^{0} 2^{3x+1} dx = 2 \int_{-1/3}^{0} 8^x dx = 2 \int_{-1/3}^{0} e^{x \ln(8)} dx = 2 \left[\frac{1}{\ln(8)} e^{x \ln(8)} \right]_{-1/3}^{0} = \frac{2}{\ln(8)} \left(1 - \frac{1}{2} \right) = \boxed{\frac{1}{\ln(8)}}$$

9. Pour $\alpha > 0$,

$$\int_{1}^{e} \frac{(\ln t)^{\alpha}}{t} dt = \left[\frac{1}{\alpha + 1} (\ln t)^{\alpha + 1} \right]_{1}^{e} = \left[\frac{1}{\alpha + 1} \right]_{1}^{e}$$

10. Cherchons le signe de $x^3 - x^2 + x - 1$ sur [0,2] pour enlever la valeur absolue.

$$x^{3} - x^{2} + x - 1 = x^{2}(x - 1) + (x - 1) = (x - 1)(x^{2} + 1)$$

Le signe étant le même que celui de x-1, on en déduit que, sur [1,2] $x^3-x^2+x-1\geqslant 0$ et sur [0,1], on a $x^3-x^2+x-1\leqslant 0$.

Ainsi:

$$\int_0^2 |x^3 - x^2 + x - 1| dx = \int_0^1 (-x^3 + x^2 - x + 1) dx + \int_1^2 (x^3 - x^2 + x - 1) dx$$

$$= \left[-\frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^1 + \left[\frac{x^4}{4} - \frac{x^3}{3} + \frac{x^2}{2} - x \right]_1^2 = \left[\frac{5}{2} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^2$$

11.

$$\int_0^5 t|t^2 - 1|dt = \int_0^1 t(1 - t^2)dt + \int_1^5 t(t^2 - 1)dt = \int_0^1 (t - t^3)dt + \int_1^5 (t^3 - t)dt$$

$$= \left[\frac{t^2}{2} - \frac{t^4}{4}\right]_0^1 + \left[\frac{t^4}{4} - \frac{t^2}{2}\right]_1^5 = \frac{1}{2} - \frac{1}{4} + \frac{5^4}{4} - \frac{25}{2} - \frac{1}{4} + \frac{1}{2} = \frac{1}{2} + \frac{625}{4} - \frac{25}{2} = \boxed{\frac{577}{4}}$$

12.

$$\int_0^5 \frac{t-1}{|t^2 - 2t| + 1} dt = \int_0^2 \frac{t-1}{(-t^2 + 2t) + 1} dt + \int_2^5 \frac{t-1}{(t^2 - 2t) + 1} dt$$

$$\left[-\frac{1}{2} \ln(-t^2 + 2t + 1) \right]_0^2 + \left[\frac{1}{2} \ln(t^2 - 2t + 1) \right]_2^5$$

$$= \frac{1}{2} \ln(16) = \boxed{2 \ln(2)}$$

$$\int_{0}^{1} \frac{1}{1+t^{2}} dt = \left[\operatorname{Arctan}(t) \right]_{0}^{1} = \operatorname{Arctan}(1) - \operatorname{Arctan}(0) = \frac{\pi}{4} - 0 = \boxed{\frac{\pi}{4}}$$

14.

$$\int_{1}^{e} \ln(t)dt = \left[t \ln(t) - t\right]_{1}^{e} = (e \ln(e) - e) - (1 \ln(1) - 1) = \boxed{1}$$

On peut aussi faire une intégration par parties, en remarquant qu'on a $\int_1^e 1 \times \ln(t) dt$.

En posant $\begin{vmatrix} u'(t) = 1 \\ v(t) = \ln(t) \end{vmatrix}$ et $\begin{vmatrix} u(t) = t \\ v'(t) = \frac{1}{t} \end{vmatrix}$, on a:

$$\int_{1}^{e} 1 \times \ln(t) dt = \left[t \ln(t) \right]_{1}^{e} - \int_{1}^{e} t \times \frac{1}{t} dt = e - \int_{1}^{e} 1 dt = e - (e - 1) = \boxed{1}$$

15. $\int_0^1 \operatorname{Arctan}(t)dt = \int_0^1 1 \times \operatorname{Arctan}(t)dt.$

On fait une intégration par parties en posant $\begin{vmatrix} u'(t) = 1 \\ v(t) = \operatorname{Arctan}(t) \end{vmatrix}$ et $\begin{vmatrix} u(t) = t \\ v'(t) = \frac{1}{1+t^2} \end{vmatrix}$, on a :

$$\int_0^1 1 \times \operatorname{Arctan}(t) dt = \left[t \operatorname{Arctan}(t) \right]_0^1 - \int_0^1 \frac{t}{1 + t^2} dt = \operatorname{Arctan}(1) - \left[\frac{1}{2} \ln(1 + t^2) \right]_0^1 = \left[\frac{\pi}{4} - \frac{1}{2} \ln(2) \right]_0^1 + \left[\frac{\pi}{4} - \frac{1}{2} \ln(2) \right]_0^1 = \left[\frac{\pi}{4} - \frac{1}{2} \ln(2) \right]_0^1 + \left[\frac{\pi}{4} - \frac{1}{2} \ln(2) \right]_0^1 = \left[\frac{\pi}{4} - \frac{1}{2} \ln(2) \right]$$

16. $\int_0^1 x \operatorname{Arctan}(x) dx ?$

On fait une intégration par parties en posant $\begin{vmatrix} u'(x) = x \\ v(x) = \operatorname{Arctan}(x) \end{vmatrix}$ et $\begin{vmatrix} u(x) = \frac{x^2}{2} \\ v'(x) = \frac{1}{1+x^2} \end{vmatrix}$, on a:

$$\int_0^1 x \times \text{Arctan}(x) dx = \left[\frac{x^2}{2} \text{Arctan}(x) \right]_0^1 - \frac{1}{2} \int_0^1 \frac{x^2}{1 + x^2} dx$$

$$= \frac{1}{2} \text{Arctan}(1) - \frac{1}{2} \int_0^1 \frac{(x^2 + 1) - 1}{1 + x^2} dx$$

$$= \frac{\pi}{8} - \frac{1}{2} \int_0^1 \left(1 - \frac{1}{1 + x^2} \right) dx$$

$$= \frac{\pi}{8} - \frac{1}{2} \left[x - \text{Arctan}(x) \right]_0^1$$

$$= \frac{\pi}{8} - \frac{1}{2} + \frac{\pi}{8} = \left[\frac{\pi}{4} - \frac{1}{2} \right]$$

17. On fait deux intégrations par parties successives dans $\int_0^{\pi/2} x^2 \sin(2x) dx$.

En posant
$$\begin{vmatrix} u(x) = x^2 \\ v'(x) = \sin(2x) \end{vmatrix}$$
 et $\begin{vmatrix} u'(x) = 2x \\ v(x) = -\frac{1}{2}\cos(2x) \end{vmatrix}$, on a:

$$\int_0^{\pi/2} x^2 \sin(2x) dx = \left[-\frac{x^2}{2} \cos(2x) \right]_0^{\pi/2} + \int_0^{\pi/2} x \cos(2x) dx = \frac{\pi^2}{8} + \int_0^{\pi/2} x \cos(2x) dx$$

En posant à nouveau : $\begin{vmatrix} u(x) = x \\ v'(x) = \cos(2x) \end{vmatrix}$ et $\begin{vmatrix} u'(x) = 1 \\ v(x) = \frac{1}{2}\sin(2x) \end{vmatrix}$, on a :

$$\int_0^{\pi/2} x^2 \sin(2x) dx = \frac{\pi^2}{8} + \left[\frac{x}{2} \sin(2x) \right]_0^{\pi/2} - \frac{1}{2} \int_0^{\pi/2} \sin(2x) dx$$
$$= \frac{\pi^2}{8} + 0 - \frac{1}{2} \left[-\frac{1}{2} \cos(2x) \right]_0^{\pi/2} = \frac{\pi^2}{8} + \frac{1}{4} (\cos(\pi) - \cos(0)) = \left[\frac{\pi^2}{8} - \frac{1}{2} \right]$$

18. On fait deux intégrations par parties successives dans $\int_0^1 (x^2 - x + 1)e^x dx$.

En posant
$$\begin{vmatrix} u(x) = x^2 - x + 1 \\ v'(x) = e^x \end{vmatrix}$$
 et $\begin{vmatrix} u'(x) = 2x - 1 \\ v(x) = e^x \end{vmatrix}$, on a :

$$\int_0^1 (x^2 - x + 1)e^x dx = \left[\left(x^2 - x + 1 \right) e^x \right]_0^1 - \int_0^1 (2x - 1)e^x dx = (e - 1) - \int_0^1 (2x - 1)e^x dx$$

En posant à nouveau : $\begin{vmatrix} u(x)=2x-1 \\ v'(x)=e^x \end{vmatrix}$ et $\begin{vmatrix} u'(x)=2 \\ v(x)=e^x \end{vmatrix}$, on a :

$$\int_0^1 (x^2 - x + 1)e^x dx = (e - 1) - \left(\left[(2x - 1)e^x \right]_0^1 - \int_0^1 2e^x dx \right)$$
$$= (e - 1) - \left(e - (-1) - \left[2e^x \right]_0^1 \right) = -2 + (2e - 2) = \boxed{2e - 4}$$

19. En reconnaissant directement une forme $-u'u^3$, on a :

$$\int_0^{\pi/2} \sin(x) \cos^3(x) dx = \left[-\frac{1}{4} \cos^4(x) \right]_0^{\pi/2} = -\frac{1}{4} \cos^4(\pi/2) + \frac{1}{4} \cos^4(0) = \frac{1}{4}$$

20. On linéarise $\sin^2(x)$.

$$\sin^2(x) = \left(\frac{e^{ix} - e^{ix}}{2i}\right)^2 = \frac{e^{2ix} - 2 + e^{-2ix}}{-4} = \frac{2\cos(2x) - 2}{-4} = \frac{1}{2} - \frac{\cos(2x)}{2}$$

Donc:

$$\int_0^{\pi/2} \sin^2(x) dx = \frac{1}{2} \int_0^{\pi/2} \left(1 - \cos(2x) \right) dx = \frac{1}{2} \left[x - \frac{1}{2} \sin(2x) \right]_0^{\pi/2} = \frac{1}{2} \times \frac{\pi}{2} = \boxed{\frac{\pi}{4}}$$

4 Calculer pour tout $n \in \mathbb{N}$: $I_n = \int_1^e t^n \ln t \ dt$ et $J_n = \int_1^e t^n (\ln t)^2 \ dt$.

1. Soit $n \in \mathbb{N}$, calculons I_n par intégration par parties. On pose :

$$\forall t \in [1, e], \quad \begin{vmatrix} u'(t) = t^n \\ v(t) = \ln(t) \end{vmatrix} \quad u(t) = \frac{1}{n+1} t^{n+1}$$

$$v'(t) = \frac{1}{t}$$

On a alors :

$$I_n = \left[\frac{1}{n+1}t^{n+1}\ln(t)\right]_1^e - \int_1^e \left(\frac{1}{n+1}t^{n+1} \times \frac{1}{t}\right)dt$$

$$= \frac{e^{n+1}}{n+1} - \frac{1}{n+1}\int_1^e t^n dt$$

$$= \frac{e^{n+1}}{n+1} - \frac{1}{n+1}\left[\frac{1}{n+1}t^{n+1}\right]_1^e$$

$$= \frac{e^{n+1}}{n+1} - \frac{e^{n+1}}{(n+1)^2} + \frac{1}{(n+1)^2}$$

2. Soit $n \in \mathbb{N}$, calculons J_n par intégration par parties. On pose :

$$\forall t \in [1, e], \quad \left| \begin{array}{c} u'(t) = t^n \\ v(t) = (\ln(t))^2 \end{array} \right| \begin{array}{c} u(t) = \frac{1}{n+1} t^{n+1} \\ v'(t) = \frac{2\ln(t)}{t} \end{array}$$

On a alors:

$$I_n = \left[\frac{1}{n+1} t^{n+1} (\ln(t))^2 \right]_1^e - \int_1^e \left(\frac{1}{n+1} t^{n+1} \times \frac{2\ln(t)}{t} \right) dt$$

$$= \frac{e^{n+1}}{n+1} - \frac{2}{n+1} I_n$$

$$= \frac{e^{n+1}}{n+1} - \frac{2}{n+1} \left(\frac{e^{n+1}}{n+1} - \frac{e^{n+1}}{(n+1)^2} + \frac{1}{(n+1)^2} \right)$$

$$= \frac{e^{n+1}}{n+1} - \frac{2e^{n+1}}{(n+1)^2} + \frac{2e^{n+1}}{(n+1)^3} - \frac{2}{(n+1)^3}$$

5 Calculer les intégrales suivantes :

1.
$$\int_{2}^{3} \frac{1}{1 - t^2} dt$$

$$3. \int_{1}^{2} \frac{3t+1}{t(t+1)} dt$$

5.
$$\int_{1}^{2} \frac{1}{t(t+1)(t+2)} dt$$

2.
$$\int_{-2}^{-1} \frac{1}{t(t-1)} dt$$

4.
$$\int_0^1 \frac{1}{(t-2)(t+3)} dt$$

6.
$$\int_{-1}^{0} \frac{t^2}{t^2 + 4t - 5} dt$$

1.

$$\int_{2}^{3} \frac{1}{1-t^{2}} dt = \int_{2}^{3} \frac{1}{(1-t)(1+t)} dt = \int_{2}^{3} \left(\frac{1/2}{1-t} + \frac{1/2}{1+t}\right) dt$$

$$= \left[-\frac{1}{2} \ln(|1-t|) + \frac{1}{2} \ln(|1+t|) \right]_{2}^{3} = -\frac{1}{2} \ln(2) + \frac{1}{2} \ln(4) + \frac{1}{2} \ln(1) - \frac{1}{2} \ln(3) = \boxed{\frac{1}{2} \ln\left(\frac{2}{3}\right)}$$

2.

$$\int_{-2}^{-1} \frac{1}{t(t-1)} dt = \int_{-2}^{-1} \left(\frac{1}{t-1} - \frac{1}{t} \right) dt = \left[\ln(|t-1|) - \ln(|t|) \right]_{-2}^{-1} = \ln(2) - \ln(1) - \ln(3) + \ln(2) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(2) - \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3) + \ln(3) + \ln(3) + \ln(3) + \ln(3) + \ln(3) = \left[\ln\left(\frac{4}{3}\right) \right]_{-2}^{-1} = \ln(3) - \ln(3) + \ln(3)$$

3.

$$\int_{1}^{2} \frac{3t+1}{t(t+1)} dt = \int_{1}^{2} \left(\frac{1}{t} + \frac{2}{t+1}\right) dt = \left[\ln(|t|) + 2\ln(|t+1|)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(1) - 2\ln(2) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(1) - 2\ln(2) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(2) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) - \ln(3) - \ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) - \ln(3) + 2\ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) + 2\ln(3) + 2\ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) + 2\ln(3) + 2\ln(3) + 2\ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) + 2\ln(3) + 2\ln(3) + 2\ln(3) = \left[\ln\left(\frac{9}{2}\right)\right]_{1}^{2} = \ln(3) + 2\ln(3) + 2\ln(3)$$

4.

$$\int_0^1 \frac{1}{(t-2)(t+3)} dt = \int_0^1 \left(\frac{1/5}{t-2} - \frac{1/5}{t+3} \right) dt = \left[\frac{1}{5} \ln(|t-2|) - \frac{1}{5} \ln(|t+3|) \right]_0^1$$
$$= \frac{1}{5} \ln(1) - \frac{1}{5} \ln(4) - \frac{1}{5} \ln(2) + \frac{1}{5} \ln(3) = \left[\frac{1}{5} \ln\left(\frac{3}{8}\right) \right]$$

5.

$$\begin{split} \int_{1}^{2} \frac{1}{t(t+1)(t+2)} dt &= \int_{1}^{2} \left(\frac{1/2}{t} - \frac{1}{t+1} + \frac{1/2}{t+2} \right) dt \\ &= \left[\frac{1}{2} \ln(|t|) - \ln(|t+1|) + \frac{1}{2} \ln(|t+2|) \right]_{1}^{2} \\ &= \frac{1}{2} \ln(2) - \ln(3) + \frac{1}{2} \ln(4) - \frac{1}{2} \ln(1) + \ln(2) - \frac{1}{2} \ln(3) = \boxed{\frac{5}{2} \ln(2) - \frac{3}{2} \ln(3)} \end{split}$$

6.

$$\begin{split} \int_{-1}^{0} \frac{t^2}{t^2 + 4t - 5} dt &= \int_{-1}^{0} \left(\frac{(t^2 + 4t - 5) - 4t + 5}{t^2 + 4t - 5} \right) dt \\ &= \int_{-1}^{0} \left(1 - \frac{4t - 5}{(t - 1)(t + 5)} \right) dt = \int_{-1}^{0} \left(1 - \frac{-1/6}{t - 1} - \frac{25/6}{t + 5} \right) dt \\ &= \left[t + \frac{1}{6} \ln(|t - 1|) - \frac{25}{6} \ln(|t + 5|) \right]_{-1}^{0} \\ &= -\frac{25}{6} \ln(5) + 1 - \frac{1}{6} \ln(2) + \frac{25}{6} \ln(4) = \boxed{1 + \frac{49}{6} \ln(2) - \frac{25}{6} \ln(5)} \end{split}$$

Calculer les intégrales suivantes avec le changement de variable indiqué.

1.
$$\int_{\ln 2}^{\ln 4} \sqrt{e^x - 1} \, dx \quad (u = \sqrt{e^x - 1})$$
2.
$$\int_{0}^{1} \frac{t}{\sqrt{t + 1}} \, dt \quad (x = t + 1)$$
3.
$$\int_{1}^{4/3} \frac{t^2}{(3t - 2)^5} \, dt \quad (u = 3t - 2)$$
4.
$$\int_{1}^{2} \frac{e^{2t}}{1 - e^t} \, dt \quad (t = \ln(x))$$
5.
$$\int_{0}^{1} \frac{\sqrt{t} - t}{\sqrt{t} + 1} \, dt \quad (x = \sqrt{t})$$
6.
$$\int_{1}^{1} e^{\sqrt{t}} \, dt \quad (t = x^2)$$
7.
$$\int_{\pi/4}^{\pi/2} \frac{dt}{\sin(t)} \quad (u = \cos(t))$$
8.
$$\int_{0}^{\pi/3} \frac{dt}{\cos(t)} \quad (x = \sin(t))$$
9.
$$\int_{1}^{2} \frac{1}{t(t^3 + 1)} \, dt \quad (u = t^3)$$
10.
$$\int_{1}^{3} \frac{\ln(t)}{\sqrt{t}} \, dt \quad (t = x^2)$$
11.
$$\int_{\pi/6}^{\pi/3} \frac{1}{\cos(x) \sin(x)} \, dx \quad (u = \sin(x))$$

1. On souhaite faire le changement de variable $u = \sqrt{e^x - 1}$. Notons pour tout $x \in [\ln(2), \ln(4)], \varphi(x) = \sqrt{e^x - 1}$.

La fonction φ est de classe \mathcal{C}^1 sur $[\ln(2), \ln(4)]$ et $\forall x \in [\ln(2), \ln(4)], \ \varphi'(x) = \frac{e^x}{2\sqrt{e^x - 1}}$.

On a donc:

6. $\int_{0}^{1} e^{\sqrt{t}} dt \ (t = x^2)$

$$u = \sqrt{e^x - 1}$$
 avec $du = \frac{e^x}{2\sqrt{e^x - 1}}dx$

et remarquons que : $u = \sqrt{e^x - 1} \iff e^x - 1 = u^2 \iff e^x = u^2 + 1$

On a alors:

$$I = \int_{\ln 2}^{\ln 4} \sqrt{e^x - 1} dx = \int_{\ln 2}^{\ln 4} \frac{2(\sqrt{e^x - 1})^2}{e^x} \times \left(\frac{e^x}{2\sqrt{e^x - 1}} dx\right)$$

$$= \int_{\ln 2}^{\ln 4} \frac{2\varphi^2(x)}{\varphi^2(x) + 1} \varphi'(x) dx$$

$$= \int_{\varphi(\ln 2)}^{\varphi(\ln(4))} \frac{2u^2}{u^2 + 1} du$$

$$= 2\int_{1}^{\sqrt{3}} \frac{u^2 + 1 - 1}{u^2 + 1} du$$

$$= 2\left[u - \operatorname{Arctan}(u)\right]_{1}^{\sqrt{3}}$$

$$= 2\left(\sqrt{3} - \operatorname{Arctan}(\sqrt{3})\right) - 2\left(1 - \operatorname{Arctan}(1)\right)$$

$$= \left[2\sqrt{3} - 2\frac{\pi}{3} - 2 + 2\frac{\pi}{4}\right]$$

2. On fait le changement de variable x = t + 1 (dx = dt), on a donc :

$$\int_0^1 \frac{t}{\sqrt{t+1}} dt = \int_1^2 \frac{x-1}{\sqrt{x}} dx = \int_1^2 \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx = \left[\frac{2}{3}x^{3/2} - 2\sqrt{x}\right]_1^2 = \frac{2}{3}(\sqrt{8} - 1) - 2(\sqrt{2} - 1)$$

3. On fait le changement de variable u = 3t - 2 (du = 3dt).

$$\int_{1}^{4/3} \frac{t^2}{(3t-2)^5} dt = \int_{1}^{2} \frac{\frac{u+2}{3}}{u^5} \left(\frac{1}{3} du\right) = \frac{1}{9} \int_{1}^{2} \left(\frac{1}{u^4} + \frac{2}{u^5}\right) du = \frac{1}{9} \left[-\frac{1}{3u^3} - \frac{1}{2u^4}\right]_{1}^{2} = \frac{1}{9} \left(\frac{7}{24} + \frac{15}{32}\right) du = \frac{1}{9} \left[-\frac{1}{3u^3} - \frac{1}{2u^4}\right]_{1}^{2} = \frac{1}{9} \left(\frac{7}{24} + \frac{15}{32}\right) du = \frac{1}{9} \left[-\frac{1}{3u^3} - \frac{1}{2u^4}\right]_{1}^{2} = \frac{1}{9} \left(\frac{7}{24} + \frac{15}{32}\right) du = \frac{1}{9} \left[-\frac{1}{3u^3} - \frac{1}{2u^4}\right]_{1}^{2} = \frac{1}{9} \left(\frac{7}{24} + \frac{15}{32}\right) du = \frac{1}{9} \left(\frac{7}{24}$$

4. Remarquons que cette fois, le changement de variable est donné en sens inverse. On veut poser $t = \ln(x)$ avec $dt = \frac{1}{x}dx$.

Remarquons que $t = 1 \Leftrightarrow x = e$ et $t = 2 \Leftrightarrow x = e^2$.

On a alors:

$$\int_{1}^{2} \frac{e^{2t}}{1 - e^{t}} dt = \int_{e}^{e^{2}} \frac{e^{2\ln x}}{1 - e^{\ln x}} \left(\frac{1}{x} dx\right) = \int_{e}^{e^{2}} \frac{x^{2}}{x(1 - x)} dx = \int_{e}^{e^{2}} \frac{x}{1 - x} dx = \int_{e}^{e^{2}} \left(\frac{1}{1 - x} - 1\right) dx$$
$$= \left[-\ln(|1 - x|) - x\right]_{e}^{e^{2}} = -\ln(e^{2} - 1) - e^{2} + \ln(e - 1) + e = e - e^{2} - \ln(e + 1)$$

5. On veut calculer $\int_0^1 \frac{\sqrt{t-t}}{\sqrt{t+1}} dt$ avec le changement de variable $x = \sqrt{t}$.

Mais il y a un problème : la fonction $t \mapsto \sqrt{t}$ n'est pas de classe \mathcal{C}^1 sur [0,1] On ne peut pas faire apparaître $\frac{1}{2\sqrt{t}}dt$, lorsque $t \in [0,1]$.

Il suffit d'écrire le changement de variable à l'inverse et d'écrire $t = x^2$ (et t = 2xdx), puisque la fonction $t \mapsto t^2$ est, elle, de classe t^2 0 sur t^2 0.

On a alors:

$$\int_0^1 \frac{\sqrt{t} - t}{\sqrt{t} + 1} dt = \int_0^1 \frac{x - x^2}{x + 1} (2x dx) = 2 \int_0^1 \frac{x^2 - x^3}{x + 1} dx = 2 \int_0^1 \frac{(x + 1)(-x^2 + 2x - 2) + 2}{x + 1} dx$$
$$= 2 \left[-\frac{x^3}{3} + x^2 - 2x + 2 \ln(x + 1) \right]_0^1 = 2 \left(-\frac{4}{3} + 2 \ln(2) \right)$$

6. On pose $t = x^2$ (dt = 2xdx), on a alors :

$$\int_0^1 e^{\sqrt{t}} dt = \int_0^1 e^x (2x dx) = 2 \int_0^1 x e^x dx = 2 \left[(x - 1)e^x \right]_0^1 = \boxed{2}$$

7. On pose $u = \cos(t)$, donc $du = (-\sin(t))dt$. On a donc :

$$\int_{\pi/4}^{\pi/2} \frac{dt}{\sin(t)} dt = \int_{\pi/4}^{\pi/2} \frac{-1}{\sin^2(t)} \left(-\sin(t) dt \right)$$

$$= -\int_{\pi/4}^{\pi/2} \frac{1}{1 - \cos^2(t)} \left(-\sin(t) dt \right)$$

$$= -\int_{\sqrt{2}/2}^{0} \frac{1}{1 - u^2} du$$

$$= \int_{0}^{\sqrt{2}/2} \left(\frac{1/2}{1 - u} + \frac{1/2}{1 + u} \right) du$$

$$= \frac{1}{2} \left[-\ln(1 - u) + \ln(1 + u) \right]_{0}^{\sqrt{2}/2} = \frac{1}{2} \ln\left(\frac{2 + \sqrt{2}}{2 - \sqrt{2}} \right)$$

8. On pose $x = \sin(t)$, donc $dx = (\cos(t))dt$. On a donc :

$$\int_0^{\pi/3} \frac{dt}{\cos(t)} = \int_0^{\pi/3} \frac{1}{\cos^2(t)} (\cos(t)) dt$$

$$= \int_0^{\pi/3} \frac{1}{(1 - \sin^2(t))} \cos(t) dt$$

$$= \int_0^{\sqrt{3}/2} \frac{1}{1 - x^2} dx$$

$$= \frac{1}{2} \int_0^{\sqrt{3}/2} \left(\frac{1}{1 - x} + \frac{1}{1 + x} \right) dx$$

$$= \frac{1}{2} \left[-\ln(1 - x) + \ln(1 + x) \right]_0^{\sqrt{3}/2} = \frac{1}{2} \ln\left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right)$$

9. On pose $u = t^3$, donc $du = 3t^2 dt$.

$$\begin{split} \int_{1}^{2} \frac{1}{t(t^{3}+1)} dt &= \frac{1}{3} \int_{1}^{2} \frac{1}{t^{3}(t^{3}+1)} (3t^{2} dt) \\ &= \frac{1}{3} \int_{1}^{8} \frac{1}{u(u+1)} du \\ &= \frac{1}{3} \int_{1}^{8} \left(\frac{1}{u} - \frac{1}{u+1} \right) du \\ &= \frac{1}{3} \left[\ln(u) - \ln(u+1) \right]_{1}^{8} \\ &= \frac{1}{3} (\ln(8) - \ln(9) + \ln(2)) = \frac{1}{3} \ln\left(\frac{16}{9}\right) = \frac{1}{6} \ln\left(\frac{4}{3}\right) \end{split}$$

10. On veut poser $t = x^2$, donc dt = 2xdx.

Remarquons que:

$$t = 1 \Longleftrightarrow x = 1$$
 et $t = 3 \Longleftrightarrow x = \sqrt{3}$

On a donc:

$$\int_{1}^{3} \frac{\ln(t)}{\sqrt{t}} dt = \int_{1}^{\sqrt{3}} \frac{\ln(x^{2})}{\sqrt{x^{2}}} 2x dx$$

$$= \int_{1}^{\sqrt{3}} 4 \ln(x) dx$$

$$= 4 \left[x \ln(x) - x \right]_{1}^{\sqrt{3}}$$

$$= 2\sqrt{3} \ln(3) - 4\sqrt{3} + 4$$

11. On veut calculer $\int_{\pi/6}^{\pi/3} \frac{1}{\cos(x)\sin(x)} dx$ avec le changement de variable $u = \sin(x)$. Remarquons que $u = \sin(x)$ donne $du = \cos(x)dx$. On a donc :

$$\int_{\pi/6}^{\pi/3} \frac{1}{\cos(x)\sin(x)} dx = \int_{\pi/6}^{\pi/3} \frac{\cos(x)dx}{\cos^2(x)\sin(x)} dx$$

$$= \int_{\pi/6}^{\pi/3} \frac{1}{(1 - \sin^2(x))\sin(x)} \cos(x) dx$$

$$= \int_{1/2}^{\sqrt{3}/2} \frac{1}{(1 - u^2)u} du$$

$$= \int_{1/2}^{\sqrt{3}/2} \left(\frac{1/2}{1 - u} - \frac{1/2}{1 + u} + \frac{1}{u}\right) du$$

$$= \left[-\frac{1}{2}\ln(1 - u) - \frac{1}{2}\ln(1 + u) + \ln(u) \right]_{1/2}^{\sqrt{3}/2}$$

$$= \left[\ln\left(\frac{u}{\sqrt{1 - u^2}}\right) \right]_{1/2}^{\sqrt{3}/2}$$

$$= \ln\left(\sqrt{3}\right) - \ln\left(\frac{1}{\sqrt{3}}\right) = \ln(3)$$

12. Calculons $\int_{\sqrt{\pi}}^{2\sqrt{\pi}} 2x \cos(x^2) dx$ avec le changement de variable $x = \sqrt{t}$

On pose $x = \sqrt{t}$ donc $dx = \frac{1}{2\sqrt{t}}dt$. On a donc :

$$\int_{\sqrt{\pi}}^{2\sqrt{\pi}} 2x \cos(x^2) dx = \int_{\pi}^{4\pi} 2\sqrt{t} \cos(t) \left(\frac{1}{2\sqrt{t}} dt\right) = \int_{\pi}^{4\pi} \cos(t) dt = \left[\sin(t)\right]_{\pi}^{4\pi} = \sin(4\pi) - \sin(\pi) = 0$$

- 7 On note pour $p, q \in \mathbb{N}$, $I(p,q) = \int_0^1 t^p (1-t)^q dt$.
 - 1. Calculer I(0,q) et I(p,0) pour $p,q \in \mathbb{N}$.
 - 2. Pour $p, q \in \mathbb{N}$, exprimer I(p+1,q) en fonction de I(p,q+1).
 - 3. Calculer I(p,q) en fonction de p et q.

$$I(0,q) = \int_0^1 (1-t)^q dt = \left[-\frac{(1-t)^{q+1}}{q+1} \right]_0^1 = \frac{1}{q+1}$$

et

$$I(p,0) = \int_0^1 t^p dt = \left[\frac{t^{p+1}}{p+1}\right]_0^1 = \frac{1}{p+1}$$

2. Pour
$$p, q \in \mathbb{N}$$
, on a : $I(p+1,q) = \int_0^1 t^{p+1} (1-t)^q dt$.
En posant $\begin{vmatrix} u(t) = t^{p+1} \\ v'(t) = (1-t)^q \end{vmatrix}$ et $\begin{vmatrix} u'(t) = (p+1)t^p \\ v(t) = \frac{-(1-t)^{q+1}}{q+1} \end{vmatrix}$, on a :

$$I(p+1,q) = \left[-\frac{t^{p+1}(1-t)^{q+1}}{q+1} \right]_0^1 + \frac{p+1}{q+1} \int_0^1 t^p (1-t)^{q+1} dt = 0 + \frac{p+1}{q+1} I(p,q+1)$$

3. On a donc, en itérant plusieurs fois la relation précédente, pour tout $p, q \in \mathbb{N}$,

$$\begin{split} I(p,q) &= \frac{p}{q+1} I(p-1,q+1) \\ &= \frac{p}{q+1} \times \frac{p-1}{q+2} I(p-2,q+2) \\ &= \frac{p(p-1)(p-2)}{(q+1)(q+2)(q+3)} I(p-3,q+3) \\ &= \vdots \\ &= \frac{p(p-1)(p-2)\cdots 1}{(q+1)(q+2)(q+3)\cdots (q+p)} I(0,q+p) \\ &= \frac{p!}{(q+1)(q+2)\cdots (q+p)} \times \frac{1}{(q+p+1)} \\ &= \frac{p!q!}{(p+q+1)!} \end{split}$$

On note pour tout
$$n \in \mathbb{N}$$
, $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.
1. La suite (I_n) est-elle monotone?

- 2. Montrer que pour tout $n \in \mathbb{N}$, $0 \leq I_n \leq \frac{e}{(n+1)!}$
- 3. Montrer que pour tout $n \ge 0$, $I_n = \frac{1}{(n+1)!} + I_{n+1}$.
- 4. Montrer que pour tout $n \in \mathbb{N}$, $I_n = e \sum_{i=0}^{n} \frac{1}{k!}$
 - 1. Pour tout $n \in \mathbb{N}$, on a :

$$I_{n+1} - I_n = \int_0^1 \frac{(1-x)^{n+1}}{(n+1)!} e^x dx - \int_0^1 \frac{(1-x)^n}{n!} e^x dx = \int_0^1 \frac{(1-x)^n}{n!} e^x \left(\frac{1-x}{n+1} - 1\right) dx$$

Or, pour tout $x \in [0,1]$, $\frac{(1-x)^n}{n!}e^x\left(\frac{1-x}{n+1}-1\right) \leq 0$, donc par positivité de l'intégrale (0<1), on a :

$$I_{n+1} - I_n \leqslant 0$$

La suite (I_n) est donc décroissante.

2. Pour tout $n \in \mathbb{N}$, on a :

$$\forall x \in [0, 1], \ 0 \leqslant \frac{(1-x)^n}{n!} e^x \leqslant \frac{(1-x)^n}{n!} e^x$$

Donc par positivité de l'intégrale, (0 < 1),

$$0 \leqslant I_n \leqslant \frac{e}{n!} \int_0^1 (1-x)^n dx = \frac{e}{n!} \int_0^1 t^n dt = \frac{e}{n!} \times \frac{1}{n+1} = \frac{e}{(n+1)!}$$

3. On a $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.

Notons pour tout
$$x \in [0,1]$$
, $\begin{vmatrix} u'(x) = (1-x)^n \\ v(x) = \frac{e^x}{n!} \end{vmatrix}$, $\begin{vmatrix} u(x) = -\frac{1}{n+1}(1-x)^{n+1} \\ v'(x) = \frac{e^x}{n!} \end{vmatrix}$.

Les fonctions u et v sont bien C^1 sur [0,1] donc on a par IPP:

$$I_n = \left[-\frac{1}{n+1} (1-x)^{n+1} \frac{e^x}{n!} \right]_0^1 + \int_0^1 \frac{(1-x)^{n+1}}{(n+1)!} e^x dx = \frac{1}{(n+1)!} + I_{n+1}$$

4. On a donc:

$$\forall k \geqslant 0, \ I_k - I_{k+1} = \frac{1}{(k+1)!}$$

En sommant cette relation pour $k \in [0, n]$, on a donc :

$$\sum_{k=0}^{n-1} (I_k - I_{k+1}) = \sum_{k=0}^{n-1} \frac{1}{(k+1)!}$$

autrement dit (somme télescopique)

$$I_0 - I_n = \sum_{k=1}^n \frac{1}{k!} \Longrightarrow I_n = I_0 - \sum_{k=1}^n \frac{1}{k!} = \int_0^1 e^x dx - \sum_{k=1}^n \frac{1}{k!} = e - 1 - \sum_{k=1}^n \frac{1}{k!} = e - \sum_{k=1}^n \frac{1}{k!} = e - 1 - \sum_{k=1}^n \frac{1}{k!} = e -$$

- **9** On note pour tout $n \in \mathbb{N}$, $I_n = \int_1^e x^2 (\ln x)^n dx$.
 - 1. Montrer que la suite (I_n) est décroissante. Est-elle minorée?
 - 2. Montrer que sur [1,e], $0 \le \ln(x) \le \frac{x}{e}$. En déduire un encadrement de I_n .
 - 3. Montrer que : $\forall n \ge 1$, $I_{n+1} = \frac{e^3}{3} \frac{n+1}{3}I_n$.
 - 1. $\forall n \in \mathbb{N}, \ I_{n+1} - I_n = \int_1^e x^2 (\ln x)^{n+1} dx - \int_1^e x^2 (\ln x)^n dx = \int_1^e x^2 (\ln x)^n (\ln(x) - 1) dx$

Or, $\forall x \in [1, e], \ x^2(\ln x)^n(\ln(x) - 1) \le 0$, donc par positivité $(1 < e), \ \int_1^e x^2(\ln x)^n(\ln(x) - 1) \, dx \le 0$.

On a donc $\forall n \in \mathbb{N}$, $I_{n+1} - I_n \leq 0$. La suite (I_n) est donc <u>décroissante</u>.

De plus, $\forall n \in \mathbb{N}, \forall x \in [1, e], x^2(\ln x)^n \geqslant 0$, donc $\forall n \in \mathbb{N}, I_n \geqslant 0$. La suite (I_n) est donc minorée (par 0).

2. Puisque ln est croissante, on a $\forall x \in [1, e], \ln(x) \ge \ln(1) = 0.$

Posons pour tout $x \in [1, e], \varphi(x) = \ln(x) - \frac{x}{e}$.

La fonction φ est dérivable sur [1,e] et on \mathbf{a} : $\forall x \in [1,e], \varphi(x) = \frac{1}{x} - \frac{1}{e} \geqslant 0$. La fonction φ est donc croissante, et comme $\varphi(e) = 0$, on $\mathbf{a} \ \forall x \in [1,e], \varphi(x) \leqslant 0$. Finalement :

$$\forall x \in [1, e], \ 0 \leqslant \ln(x) \leqslant \frac{x}{e}$$

D'où:

$$\forall x \in [1, e], 0 \leqslant x^2 (\ln x)^n \leqslant x^2 \left(\frac{x}{e}\right)^n$$

Par positivité (1 < e), on en déduit que $: 0 \le \int_1^e x^2 (\ln x)^n dx \le \frac{1}{e^n} \int_1^e x^{n+2} dx$,

autrement dit:

$$0 \leqslant I_n \leqslant \frac{e^{n+3} - 1}{(n+3)e^n} \leqslant \frac{e^{n+3}}{(n+3)e^n} = \frac{e^3}{n+3}$$

D'où:

$$\boxed{0 \leqslant I_n \leqslant \frac{e^3}{n+3}}$$

3. Soit $n \ge 1$. On a $I_{n+1} = \int_1^e x^2 (\ln x)^{n+1} dx$.

Notons pour tout $x \in [1, e]$, $\begin{vmatrix} u'(x) = x^2 \\ v(x) = (\ln x)^{n+1} \end{vmatrix}$ et $\begin{vmatrix} u(x) = \frac{x^3}{3} \\ v'(x) = (n+1)\frac{1}{x}(\ln x)^n \end{vmatrix}$. Les fonctions u et v sont bien \mathcal{C}^1 sur [1,e] donc on peut intégrer par parties

$$I_{n+1} = \left[\frac{x^3}{3}\ln(x)^{n+1}\right]_1^e - \int_1^e \frac{x^3}{3}(n+1)\frac{1}{x}(\ln x)^n dx = \frac{e^3}{3} - \frac{n+1}{3}I_n$$

- 10 Pour $n \in \mathbb{N}$, on pose : $I_n = \int_0^1 x^n \sqrt{1 x} dx$.
 - 1. Calculer I_0 et I_1 .
 - 2. Déterminer une relation entre I_n et I_{n-1} pour $n \ge 1$. En déduire la valeur de I_n pour tout $n \ge 1$.

$$I_0 = \int_0^1 \sqrt{1 - x} dx = \int_0^1 (1 - x)^{1/2} dx = \left[-\frac{(1 - x)^{3/2}}{3/2} \right]_0^1 = \frac{2}{3}$$

$$I_1 = \int_0^1 x \sqrt{1 - x} dx = \int_0^1 (x - 1 + 1) \sqrt{1 - x} dx$$

$$= \int_0^1 \sqrt{1 - x} dx - \int_0^1 (1 - x)^{3/2} dx$$

$$= I_0 - \left[-\frac{(1 - x)^{5/2}}{5/2} \right]_0^1 = I_0 - \frac{2}{5} = \frac{2}{3} - \frac{2}{5} = \frac{4}{15}$$

2. Pour $n \geqslant 1$,

$$I_n = \int_0^1 x^n \sqrt{1 - x} dx = \int_0^1 x^{n-1} (1 - (1 - x)) \sqrt{1 - x} dx = \int_0^1 x^{n-1} \sqrt{1 - x} dx - \int_0^1 x^{n-1} (1 - x)^{3/2} dx$$
$$= I_{n-1} - \int_0^1 x^{n-1} (1 - x)^{3/2} dx$$

On fait une IPP dans l'intégrale obtenue.

Posons $\forall x \in [0,1], u'(x) = x^{n-1}, v(x) = (1-x)^{3/2}, u(x) = \frac{1}{n}x^n \text{ et } v'(x) = -\frac{3}{2}\sqrt{1-x}.$ On a alors :

$$I_n = I_{n-1} - \left[\frac{1}{n} x^n (1-x)^{3/2} \right]_0^1 - \frac{3}{2n} \int_0^1 x^n \sqrt{1-x} dx$$

D'où:

$$I_n = I_{n-1} - \frac{3}{2n}I_n \Longrightarrow \left(1 + \frac{3}{2n}\right)I_n = I_{n-1} \Longrightarrow \boxed{I_n = \frac{2n}{2n+3}I_{n-1}}$$

On a donc:

$$I_{1} = \frac{2}{5}I_{0}$$

$$I_{2} = \frac{4}{7}I_{1} = \frac{4 \times 2}{7 \times 5}I_{0}$$

$$I_{3} = \frac{6}{9}I_{2} = \frac{6 \times 4 \times 2}{9 \times 7 \times 5}I_{0}$$

par une récurrence immédiate :

$$I_n = \frac{(2n)(2n-2)(2n-4)\cdots 4\times 2}{(2n+3)(2n+1)(2n-1)\cdots 7\times 5}I_0$$

$$= \frac{(2n+2)(2n)^2(2n-2)^2(2n-4)^2\cdots 4^2\times 2^2}{(2n+3)!}\times 2$$

$$= \boxed{(4n+4)\frac{(2^n n!)^2}{(2n+3)!}}$$

11 Pour
$$n \in \mathbb{N}$$
, on pose : $I_n = \int_0^1 (1 - t^2)^n dt$.

1. Etablir une relation entre I_n et I_{n+1} . En déduire la valeur de I_n .

2. Calculer alors
$$S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1} \binom{n}{k}$$
 pour $n \in \mathbb{N}$.

1.

$$I_{n+1} = \int_0^1 (1-t^2)^{n+1} dt = \int_0^1 (1-t^2)(1-t^2)^n dt = \int_0^1 (1-t^2)^n dt - \int_0^1 t^2 (1-t^2)^n dt = I_n - \int_0^1 t^2 (1-t^2)^n dt$$
On pose $\forall t \in [0,1], \begin{vmatrix} u(t) = t \\ v'(t) = t(1-t^2)^n \end{vmatrix}, \begin{vmatrix} u'(t) = 1 \\ v(t) = \frac{1}{2(n+1)}(1-t^2)^{n+1} \end{vmatrix}$

Les fonctions u et v étant bien de classe C^1 sur [0,1]

$$I_{n+1} = I_n - \left[\frac{1}{2(n+1)} t(1-t^2)^{n+1} \right]_0^1 + \int_0^1 \frac{1}{2(n+1)} (1-t^2)^{n+1} dt = I_n + \frac{1}{2(n+1)} I_{n+1}$$

On a donc finalement :

$$I_{n+1} = I_n + \frac{1}{2n+2}I_{n+1} \Longrightarrow \boxed{I_{n+1} = \frac{2n+2}{2n+3}I_n}$$

On a alors en utilisant la relation de récurrence :

$$I_1 = \frac{2}{3}I_0$$
, puis $I_2 = \frac{4}{5}I_1 = \frac{4 \times 2}{5 \times 3}I_0$

puis par une récurrence immédiate, on a :

$$I_n = \frac{(2n)(2n-2)(2n-4) \times \dots \times 4 \times 2}{(2n+1)(2n-1)(2n-3) \times \dots \times 5 \times 3} I_0$$

Puisque $I_0 = \int_0^1 1 dt = 1$, on donc:

$$\forall n \geqslant 0, I_n = \frac{(2n)(2n-2)(2n-4) \times \dots \times 4 \times 2}{(2n+1)(2n-1)(2n-3) \times 5 \times 3}$$

$$= \frac{((2n)(2n-2)(2n-4) \times 4 \times 2)^2}{(2n+1) \times (2n)!} = \frac{(2^n n!)^2}{(2n+1)!} = \boxed{\frac{4^n (n!)^2}{(2n+1)!}}$$

2. Soit $n \in \mathbb{N}$. Alors :

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1} \binom{n}{k} = \sum_{k=0}^n \binom{n}{k} (-1)^k \frac{1}{2k+1} = \sum_{k=0}^n \binom{n}{k} (-1)^k \int_0^1 t^{2k} dt = \int_0^1 \left(\sum_{k=0}^n \binom{n}{k} (-t^2)^k\right) dt$$
$$= \int_0^1 (1-t^2)^n dt = I_n$$

On en déduit donc que :

$$\forall n \in \mathbb{N}, \quad S_n = \frac{4^n (n!)^2}{(2n+1)!}$$

12 Pour tout
$$n \in \mathbb{N}$$
, on pose $u_n = \int_0^1 \frac{1}{1+t+t^n} dt$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq \ln(2)$.
- 2. Montrer que $\forall n \in \mathbb{N}, \ \ln(2) u_n \leqslant \frac{1}{n+1}$.
- 3. En déduire un encadrement de u_n .
 - 1. Soit $n \in \mathbb{N}$. On a :

$$\forall t \in [0,1], \ \frac{1}{1+t+t^n} \leqslant \frac{1}{1+t}$$

D'où par positivité de l'intégrale (0<1)

$$\int_0^1 \frac{1}{1+t+t^n} dx \le \int_0^1 \frac{1}{1+t} dt$$

autrement dit:

$$u_n \leqslant \ln(2)$$

2. Pour $n \in \mathbb{N}$,

$$\ln(2) - u_n = \int_0^1 \left(\frac{1}{1+t} - \frac{1}{1+t+t^n} \right) dt = \int_0^1 \frac{t^n}{(1+t)(1+t+t^n)} dt \le \int_0^1 t^n dt = \frac{1}{n+1}$$

3. On en déduit donc que :

$$\ln(2) - \frac{1}{n+1} \leqslant u_n \leqslant \ln(2)$$

13 Soit F la fonction définie par $F(x) = \int_0^x e^{\cos t} dt$

- 1. Déterminer le domaine de définition de la fonction F et montrer que F est dérivable sur son domaine de définition. Calculer sa dérivée.
- 2. Résoudre dans \mathbb{R} l'inéquation $F(x) \leq 0$.
- 3. Montrer que F est strictement croissante sur \mathbb{R} .
- 4. Montrer que $\forall x \in \mathbb{R}, |F(x)| \leq e|x|$.
- 5. Etudier la parité de la fonction F.
 - 1. Soit $x \in \mathbb{R}$ fixé. La fonction $t \mapsto e^{\cos(t)}$ étant continue sur \mathbb{R} (par composition), elle l'est également sur l'intervalle [0,x] (ou [x,0]). Donc l'intégrale $\int_0^x e^{\cos(t)} dt$ est bien définie et F(x) existe : $D_f = \mathbb{R}$.

La fonction $t \mapsto e^{\cos(t)}$ étant continue sur \mathbb{R} , elle admet une primitive g sur \mathbb{R} de classe \mathcal{C}^1 . On a alors:

$$\forall x \in \mathbb{R}, \ F(x) = \int_0^x e^{\cos(t)} dt = \left[g(t) \right]_0^x = g(x) - g(0)$$

Ainsi, par somme d'une fonction de classe \mathcal{C}^1 et d'une fonction constante, F est bien dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ F'(x) = g'(x) = e^{\cos(x)}$$

(on pouvait également reconnaître directement pour F l'unique primitive de $t\mapsto e^{\cos(t)}$ qui s'annule en 0).

2. Soit x > 0. Alors, la fonction $t \mapsto e^{\cos(t)}$ étant strictement positive et continue sur l'intervalle [0, x], par positivité de l'intégrale, les bornes sont dans le bon ordre, on obtient $\int_0^x e^{\cos(t)} dt > 0$.

Soit $x \le 0$. Alors : $F(x) = \int_0^x e^{\cos(t)} dt = -\int_x^0 e^{\cos(t)} dt$. La fonction $t \mapsto e^{\cos(t)}$ étant positive sur

l'intervalle [x,0], par positivité de l'intégrale, on obtient $\int_{x}^{0} e^{\cos(t)} dt \ge 0$ et donc $F(x) \le 0$.

On a donc montré que : $F(x) \leq 0 \iff x \leq 0$

- 3. La fonction F est dérivable d'après la question 1 et $\forall x \in \mathbb{R}, \ F'(x) = e^{\cos(x)} > 0$, donc la fonction F est strictement croissante sur \mathbb{R} .
- 4. $\underline{\text{Si } x \ge 0}$, $\left| \int_0^x e^{\cos(t)} dt \right| \le \int_0^x e^{\cos(t)} dt \le \int_0^x e^1 dt = xe$. $\underline{\text{Si } x \le 0}$, $\left| \int_0^x e^{\cos(t)} dt \right| = \int_0^0 e^{\cos(t)} dt \le \int_0^0 e^1 dt = -xe$.

Finalement

$$\forall x \in \mathbb{R}, |F(x)| \leqslant e|x|$$

5. Soit $x \in \mathbb{R}$. En utilisant un changement de variable u = -t on obtient :

$$F(-x) = \int_0^{-x} e^{\cos t} dt = \int_{-0}^x e^{\cos(-u)} (-du) = -\int_0^x e^{\cos(u)} du = -F(x)$$

La fonction F est donc impaire.

14 Pour chacune des fonctions suivantes, donner :

- le domaine de définition de f
- le signe de f sur le domaine de définition,
- la parité éventuelle
- la dérivée de f si elle existe

1.
$$f: x \mapsto \int_0^x \frac{t}{e^t - e^{-t}} dt$$

4.
$$f: x \mapsto \int_{1}^{x} |t|^{3} dt$$

7.
$$f: x \mapsto \int_0^x \frac{dt}{1-t^4}$$

2.
$$f: x \mapsto \int_0^x \frac{e^t - e^{-t}}{e^t + e^{-t}} dt$$

5.
$$f: x \mapsto \int_0^x \frac{\sqrt{t}}{t^4 + 1} dt$$

8.
$$f: x \mapsto \int_{1}^{x} e^{-t^2} dt$$

3.
$$f: x \mapsto \int_0^x |t| dt$$

6.
$$f: x \mapsto \int_{x}^{0} \sqrt{1+t^2} dt$$

9.
$$f: x \mapsto \int_{x}^{2x} e^{-t^2} dt$$

1.

$$f(x) = \int_0^x \frac{t}{e^t - e^{-t}} dt$$

La fonction $t\mapsto \frac{t}{e^t-e^{-t}}$ est définie et continue sur \mathbb{R}^* . Ainsi, quelque soit la valeur de x, la fonction $t\mapsto \frac{t}{e^t-e^{-t}}$ ne sera jamais continue sur [0,x] (ou [x,0]), donc l'intégrale $\int_0^x \frac{t}{e^t-e^{-t}}dt$ n'est pas bien définie.

Ainsi f n'est pas définie.

2.

$$f(x) = \int_0^x \frac{e^t - e^{-t}}{e^t + e^{-t}} dt$$

La fonction $t\mapsto \frac{e^t-e^{-t}}{e^t+e^{-t}}$ est continue sur $\mathbb R$. Ainsi, pour tout $x\in\mathbb R$, l'intégrale $\int_0^x \frac{e^t-e^{-t}}{e^t+e^{-t}}dt$ est bien définie, donc f est définie sur $\mathbb R$.

Pour $x \geqslant 0$,

$$\forall t \in [0, x], \ \frac{e^t - e^{-t}}{e^t + e^{-t}} \geqslant 0$$

donc par positivité $(0 \le x)$,

$$\int_0^x \frac{e^t - e^{-t}}{e^t + e^{-t}} dt \geqslant 0$$

Ainsi, f est positive sur \mathbb{R}^+ .

Pour $x \leq 0$,

$$\forall t \in [x, 0], \ \frac{e^t - e^{-t}}{e^t + e^{-t}} \le 0$$

donc par positivité ($x \leq 0$) (bornes dans le mauvais sens),

$$\int_0^x \frac{e^t - e^{-t}}{e^t + e^{-t}} dt \geqslant 0$$

Ainsi, f est positive aussi sur \mathbb{R}^- .

Pour tout $x \in \mathbb{R}$,

$$f(-x) = \int_0^{-x} \frac{e^t - e^{-t}}{e^t + e^{-t}} dt \stackrel{u=-t}{=} \int_0^x \frac{e^{-u} - e^u}{e^{-u} + e^u} (-du) = \int_0^x \frac{e^u - e^{-u}}{e^u + e^{-u}} du = f(x)$$

ainsi, f est paire.

Enfin, f est par définition la primitive de $t\mapsto \frac{e^t-e^{-t}}{e^t+e^{-t}}$ qui s'annule en 0, donc f est dérivable et :

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

3.

$$f(x) = \int_0^x |t|dt$$

La fonction $t\mapsto |t|$ est continue sur \mathbb{R} , ainsi, pour tout réel x, l'intégrale $\int_0^x |t|dt$ existe bien.

La fonction f est donc bien définie sur \mathbb{R} .

De plus, la fonction $t \mapsto |t|$ est toujours positive, donc l'intégrale est positive si et seulement si les bornes sont dans le bon sens :

$$\forall x \geqslant 0, \ f(x) \geqslant 0$$
 et $\forall x \leqslant 0, \ f(x) \leqslant 0$

Pour tout $x \in \mathbb{R}$,

$$f(-x) = \int_0^{-x} |t| dt \stackrel{u=-t}{=} \int_0^x |-u|(-du) = -\int_0^x |u| du = -f(x)$$

Ainsi, f est impaire.

Enfin, f est par définition la primitive de $t \mapsto |t|$ qui s'annule en 0. Elle est donc dérivable et on a :

$$\forall x \in \mathbb{R}, \ f'(x) = |x|$$

4.

$$f(x) = \int_{1}^{x} |t|^{3} dt$$

La fonction $t \mapsto |t|^3$ est continue sur \mathbb{R} . Ainsi, pour tout $x \in \mathbb{R}$, l'intégrale $\int_1^x |t|^3 dt$ a bien un sens. Ainsi, f est définie sur \mathbb{R} .

De plus, la fonction $t \mapsto |t|^3$ est toujours positive, donc l'intégrale est positive si et seulement si les bornes sont dans le bon sens. On a donc :

$$\forall x \geqslant 1, \ f(x) \geqslant 0, \qquad \forall x \leqslant 1, \ f(x) \leqslant 0$$

La fonction f ne peut pas être paire (vu son signe) et n'est pas impaire puisque $f(0) \neq 0$. Aucune parité donc.

Enfin, f est exactement la primitive de $t \mapsto |t|^3$ qui s'annule en 1, donc par définition f est dérivable et :

$$\forall x \in \mathbb{R}, \ f'(x) = |x|^3$$

$$f(x) = \int_0^x \frac{\sqrt{t}}{t^4 + 1}$$

La fonction $t\mapsto \frac{\sqrt{t}}{t^4+1}$ est continue sur $[0,+\infty[$.

Ainsi, f(x) existe si et seulement si $x \ge 0$ car c'est le seul cas possible où $t \mapsto \frac{\sqrt{t}}{t^4+1}$ soit continue sur [0,x].

$$D_f = [0, +\infty[$$

De plus, pour tout $t \ge 0$, $\frac{\sqrt{t}}{t^4 + 1} \ge 0$, les bornes étant dans le bon sens, on a donc que :

$$\forall x \geqslant 0, f(x) = \int_0^x \frac{\sqrt{t}}{t^4 + 1} dt \geqslant 0$$

f n'étant pas définie sur $]-\infty,0[$, elle ne peut être ni paire ni impaire.

Enfin, par définition, f est la primitive de $t \mapsto \frac{\sqrt{t}}{t^4+1}$ qui s'annule en 0, elle est donc dérivable sur $[0, +\infty[$ et :

$$\forall x \geqslant 0, \ f'(x) = \frac{\sqrt{x}}{x^4 + 1}$$

6.

$$f(x) = \int_{x}^{0} \sqrt{1 + t^2} dt$$

La fonction $t \mapsto \sqrt{1+t^2}$ est continue sur \mathbb{R} . Donc pour tout réel x, elle est continue sur [0,x] ou [x,0], l'intégrale a donc toujours un sens :

$$D_f = \mathbb{R}$$

De plus, $t\mapsto \sqrt{1+t^2}$ est toujours positive, donc l'intégrale est positive si et seulement si les bornes sont dans le bon sens :

$$\forall x \leq 0, \ f(x) \geqslant 0$$
 et $\forall x \geqslant 0, \ f(x) \leq 0$

On a:

$$\forall x \in \mathbb{R}, \ f(-x) = \int_{-x}^{0} \sqrt{1 + t^2} dt \stackrel{u = -t}{=} \int_{x}^{0} \sqrt{1 + (-u)^2} (-du) = -\int_{x}^{0} \sqrt{1 + u^2} du = -f(x)$$

donc f est impaire.

Enfin, on a:

$$\forall x \in \mathbb{R}, \ f(x) = -\int_0^x \sqrt{1+t^2}dt = -\varphi(x)$$

où φ est la primitive de $t\mapsto \sqrt{1+t^2}$ qui s'annule en 0, donc f est bien dérivable et on a :

$$\forall x \in \mathbb{R}, \ f'(x) = -\varphi'(x) = -\sqrt{1+x^2}$$

$$f(x) = \int_0^x \frac{dt}{1 - t^4}$$

La fonction $t \mapsto \frac{1}{1-t^4}$ est définie et continue sur $]-\infty,-1[\cup]-1,1[\cup]1,+\infty[$.

L'intégrale $\int_0^x \frac{dt}{1-t^4}$ a bien un sens lorsque $t \mapsto \frac{1}{1-t^4}$ est continue sur le segment [0,x] (ou [x,0]), donc cela impose que $x \in]-1,1[$ (car si $x \notin]-1,1[$ la fonction sous l'intégrale ne serait pas continue sur tout le segment [0,x] ou [x,0]),

$$D_f =]-1,1[$$

Pour tout $t \in]-1,1[, \frac{1}{1-t^4} \geqslant 0$, donc l'intégrale définissant f(x) est positive si et seulement si les bornes sont dans le bon sens :

$$\forall x \in [0, 1[, f(x) \ge 0, \text{ et } \forall x \in]-1, 0], f(x) \le 0$$

On a:

$$\forall x \in]-1, 1[, \ f(-x) = \int_0^{-x} \frac{1}{1 - t^4} dt \stackrel{u = -t}{=} \int_0^x \frac{1}{1 - (-u)^4} (-du) = -\int_0^x \frac{1}{1 - u^4} du = -f(x)$$

donc f est impaire.

Enfin, f est par définition la primitive sur]-1,1[de $t\mapsto \frac{1}{1-t^4}$ qui s'annule en 0, elle est donc dérivable sur]-1,1[et :

$$\forall x \in]-1,1[, f'(x) = \frac{1}{1-x^4}$$

8.

$$f(x) = \int_1^x e^{-t^2} dt$$

La fonction $t \mapsto e^{-t^2}$ est continue sur \mathbb{R} , donc pour tout réel x l'intégrale $\int_1^x e^{-t^2} dt$ a bien un sens.

$$D_f = \mathbb{R}$$

La fonction $t \mapsto e^{-t^2}$ étant toujours positive, l'intégrale est positive si et seulement si ses bornes sont dans le bon sens.

$$\forall x \ge 1, \ f(x) \ge 0,$$
 et $\forall x \le 1, \ f(x) \le 0$

Vu le signe, f ne peut pas être paire, et comme $f(0) \neq 0$, f ne peut pas être impaire. Aucune parité. Enfin, f est par définition la primitive de $t \mapsto e^{-t^2}$ qui s'annule en 1, donc f est dérivable sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \ f'(x) = e^{-x^2}$$

$$f: x \mapsto \int_{x}^{2x} e^{-t^2} dt$$

La fonction $t \mapsto e^{-t^2}$ est continue sur \mathbb{R} .

Ainsi, pour tout $x \in \mathbb{R}$, $t \mapsto e^{-t^2}$ est continue sur [x, 2x] (ou sur [2x, x]), donc l'intégrale est toujours bien définie.

$$D_f = \mathbb{R}$$

La fonction $t \mapsto e^{-t^2}$ est toujours positive, donc f(x) est positif si et seulement si les bornes sont dans le bon sens

$$\forall x \geqslant 0, \quad f(x) \geqslant 0 \quad \text{et} \quad \forall x \leqslant 0, \quad f(x) \leqslant 0$$

Pour tout réel x,

$$f(-x) = \int_{-x}^{-2x} e^{-t^2} dt \stackrel{u=-t}{=} \int_{x}^{2x} e^{-(-u)^2} (-du) = -\int_{x}^{2x} e^{-u^2} du = -f(x)$$

Ainsi, f est impaire.

Notons φ une primitive sur \mathbb{R} de $t \mapsto e^{-t^2}$ (la fonction $t \mapsto e^{-t^2}$ étant continue, elle admet bien au moins une primitive), on a donc :

$$\forall x \in \mathbb{R}, \ f(x) = \varphi(2x) - \varphi(x)$$

Ainsi, f est dérivable en tant que somme de composées de fonctions dérivables, et on a :

$$\forall x \in \mathbb{R}, \ f'(x) = 2\varphi'(2x) - \varphi'(x) = 2e^{-(2x)^2} - e^{-x^2} = 2e^{-4x^2} - e^{-x^2}$$

$$\boxed{15} \quad \text{Soit } f(x) = \int_{x}^{2x} \frac{e^{t}}{t} dt.$$

- 1. Montrer que f est de classe \mathcal{C}^1 sur $]0, +\infty[$ et calculer sa dérivée.
- 2. En remarquant que $\ln(2) = \int_{x}^{2x} \frac{dt}{t}$ pour tout réel x > 0, montrer que f admet $\ln(2)$ pour limite en 0.
- 3. Montrer que f peut se prolonger en une fonction C^1 sur $[0, +\infty[$.
- 4. Étudier les variations de f. Étudier le signe de f(x) sur le domaine de définition de f.
- 5. Tracer l'allure de la courbe de f.
 - 1. La fonction f est-elle déjà bien définie sur $]0, +\infty[$?

Soit $x \in]0, +\infty[$ fixé. La fonction $t \mapsto \frac{e^t}{t} dt$ est continue sur le segment [x, 2x] donc l'intégrale $\int_x^{2x} \frac{e^t}{t} dt$ a bien un sens : f(x) existe.

Remarquons que également que pour tout $x \in]-\infty,0[,t\mapsto \frac{e^t}{t}dt$ est continue sur le segment [2x,x] donc l'intégrale $\int_x^{2x} \frac{e^t}{t}dt$ a bien un sens : f(x) existe également :

$$D_f = \mathbb{R} \setminus \{0\}$$

De plus, puisque $t \mapsto \frac{e^t}{t}$ est continue sur $]0, +\infty[$, elle admet une primitive φ de classe \mathcal{C}^1 sur cet intervalle. On a alors :

$$\forall x \in]0, +\infty[, \ f(x) = \int_{x}^{2x} \frac{e^{t}}{t} dt = \left[\varphi(t)\right]_{x}^{2x} = \varphi(2x) - \varphi(x)$$

Par somme et composition, f est de classe C^1 sur $]0, +\infty[$ et on a :

$$\forall x \in]0, +\infty[, \ f'(x) = 2\varphi'(2x) - \varphi'(x) = 2\frac{e^{2x}}{2x} - \frac{e^x}{x} = \frac{e^{2x} - e^x}{x}$$

2. On a pour tout x > 0, 2x > x, donc $\forall x > 0$, $f'(x) = \frac{e^{2x} - e^x}{x} > 0$. La fonction f est strictement croissante sur $]0, +\infty[$.

De plus, pour tout $x>0,\,t\mapsto \frac{e^t}{t}$ est positive sur [x,2x] donc par positivité de l'intégrale,

 $f(x) = \int_x^{2x} \frac{e^t}{t} dt \ge 0$. On a donc f croissante sur $]0, +\infty[$ et minorée par 0. Ainsi, par le théorème de la limite monotone, f admet une limite finie ℓ en 0^+ : on peut prolonger f par continuité en 0 en posant $f(0) = \ell$.

Soit x > 0, on a:

$$\int_{x}^{2x} \frac{dt}{t} = \left[\ln(t) \right]_{x}^{2x} = \ln(2x) - \ln(x) = \ln\left(\frac{2x}{x}\right) = \ln(2)$$

La fonction $t \mapsto e^t$ est croissante sur [x, 2x], donc :

$$\forall t \in [x, 2x], \qquad \frac{e^x}{t} \leqslant \frac{e^t}{t} \leqslant \frac{e^{2x}}{t}$$

Par positivité de l'intégrale, on en déduit que :

$$\int_{x}^{2x} \frac{e^{x}}{t} dt \leqslant \int_{x}^{2x} \frac{e^{t}}{t} dt \leqslant \int_{x}^{2x} \frac{e^{2x}}{t} dt$$

ou autrement dit que :

$$e^x \ln(2) \leqslant f(x) \leqslant e^{2x} \ln(2)$$

En passant à la limite dans l'inégalité lorsque $x \to 0^+$, par encadrement, on déduit alors que :

$$\lim_{x \to 0^+} f(x) = \ln(2)$$

3.

$$f: \begin{array}{ccc} [0, +\infty[& \longrightarrow & \mathbb{R} \\ f: & & \\ x & \longmapsto & \begin{cases} \int_{x}^{2x} \frac{e^{t}}{t} dt & \text{si } x > 0 \\ ln(2) & \text{si } x = 0 \end{cases}$$

La fonction f est à présent continue sur $[0, +\infty[$ et de classe \mathcal{C}^1 sur $]0, +\infty[$. De plus,

$$\forall x > 0, \ f'(x) = \frac{e^{2x} - e^x}{x} = e^x \frac{e^x - 1}{x} \underset{x \to 0}{\sim} e^x \xrightarrow[x \to 0]{} 1$$

Donc par le Théorème de Prolongement C^1 , f est dérivable en 0, f'(0) = 1 et f est de classe C^1 sur $[0, +\infty[$.

4. On a déjà déterminé l'expression de f' sur $]-\infty,0[$. Il est facile de vérifier que cette expression est également valable sur $]-\infty,0[$. On a donc :

$$\forall x \in \mathbb{R} \setminus \{0\}, \ f'(x) = \frac{e^{2x} - e^x}{x} \geqslant 0$$

Donc f est croissante sur $]-\infty,0[$ et croissante sur $]0,+\infty[$, donc puisqu'elle est de plus continue en 0, elle est croissante sur \mathbb{R} .

On a déjà dit également que f était positive sur $[0, +\infty[$.

De plus, pour tout x < 0, on a :

$$f(x) = \int_{x}^{2x} \frac{e^t}{t} dt = -\int_{2x}^{x} \frac{e^t}{t} dt$$

et la fonction $t \mapsto \frac{e^t}{t}$ est négative sur [2x, x], donc d'intégrale négative, et on a donc $f(x) \ge 0$. Ainsi, la fonction f est positive sur \mathbb{R} .

5. Pour nous aider à tracer l'allure de la courbe, regardons les limites de f.

On a pour tout $t \in \mathbb{R}$, $\frac{e^t}{t} \ge 1$, donc pour tout x > 0,

$$f(x) = \int_{x}^{2x} \frac{e^{t}}{t} dt \geqslant \int_{x}^{2x} 1 dt = (2x) - x = x \underset{x \to +\infty}{\longrightarrow} +\infty$$

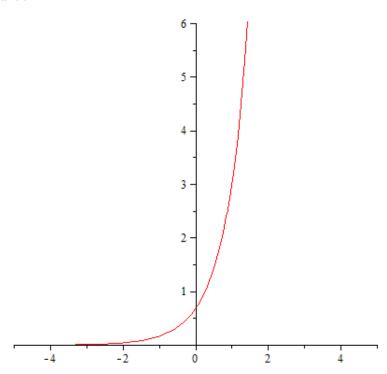
Par comparaison, on a donc $\lim_{x\to +\infty} f(x) = +\infty$.

De plus, $\forall t < -1, -\frac{1}{t} \leqslant 1$, on a donc :

$$f(x) = \int_{x}^{2x} \frac{e^{t}}{t} dt = \int_{2x}^{x} \left(\frac{e^{t}}{-t}\right) dt \leqslant \int_{2x}^{x} e^{t} dt = e^{x} - e^{2x} \underset{x \to -\infty}{\longrightarrow} 0$$

Par encadrement, (puisque f est positive), on a donc $\lim_{x\to-\infty} f(x) = 0$.

D'où l'allure de la courbe :



16 On pose
$$g(x) = (2x - 1) \int_{1/2}^{x} \frac{t^4 dt}{\sqrt{1 + t^2 + t^4}}$$
.

- 1. Déterminer le domaine de définition de la fonction g.
- 2. Démontrer que $\forall x \in \mathbb{R}, g(x) \geqslant 0$.
- 3. Résoudre l'équation g(x) = 0.
 - 1. La fonction $\varphi: t \mapsto \frac{t^4}{\sqrt{1+t^2+t^4}}$ est continue sur \mathbb{R} , donc pour tout $x \in \mathbb{R}$, l'intégrale $\int_{1/2}^x \varphi(t)dt$ existe. La fonction g est donc bien définie sur \mathbb{R} .
 - 2. Soit $x \ge 1/2$. Alors $2x 1 \ge 0$. De plus, φ est positive sur [1/2, x] donc par positivité de l'intégrale $\int_{1/2}^x \varphi(t)dt \ge 0$. Par produit on a donc bien $g(x) \ge 0$.

Soit $x \le 1/2$. Alors $2x-1 \le 0$. De plus, $\int_{1/2}^x \varphi(t) dt = -\int_x^{1/2} \varphi(t) \le 0$ (mêmes raisons, puisque φ est positive, puis positivité de l'intégrale $\int_x^{1/2} \varphi(t) \ge 0$). Ainsi, par produit, on a bien $g(x) \ge 0$. On a donc bien montré que :

$$\forall x \in \mathbb{R}, \ g(x) \geqslant 0$$

3. On a de manière évidente déjà que g(1/2)=0. De plus, pour tout $x \neq 1/2$, la fonction φ étant positive sur [1/2,x] (ou [x,1/2]) et non identiquement nulle, l'intégrale $\int_{1/2}^x \varphi(t)dt$ n'est pas nulle. Donc g ne s'annule qu'en 1/2.

17 Soit f la fonction définie par $f(x) = \int_{x}^{2x} \frac{dt}{\sqrt{t^4 + 1}}$

- 1. Déterminer le domaine de définition de f
- 2. f est-elle paire? impaire?.
- 3. Démontrer que pour $x \neq 0$, on a $0 \leqslant f(x) \leqslant \frac{1}{2x}$
- 4. En déduire $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
 - 1. Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \frac{1}{\sqrt{t^4 + 1}}$ est continue sur [x, 2x] (ou [2x, x]), donc f(x) est bien défini pour tout réel x:

$$D_f = \mathbb{R}$$

2. Soit $x \in \mathbb{R}$. On a à l'aide d'un changement de variable t = -u:

$$f(-x) = \int_{-x}^{-2x} \frac{dt}{\sqrt{t^4 + 1}} = \int_{x}^{2x} \frac{-du}{\sqrt{(-u)^4 + 1}} = -\int_{x}^{2x} \frac{du}{\sqrt{u^4 + 1}} = -f(x)$$

donc la fonction f est impaire.

3. Soit x > 0. On a alors pour tout $t \in [x, 2x], \sqrt{t^4 + 1} \geqslant \sqrt{t^4} = t^2$. On a donc :

$$\forall t \in [x, 2x], \ 0 \leqslant \frac{1}{\sqrt{t^4 + 1}} \leqslant \frac{1}{t^2}$$

D'où en intégrant :

$$0 \leqslant \int_{x}^{2x} \frac{dt}{\sqrt{t^4 + 1}} \leqslant \int_{x}^{2x} \frac{1}{t^2} dt = \left[\frac{-1}{t} \right]_{x}^{2x} = \frac{-1}{2x} + \frac{1}{x} = \frac{1}{2x}$$

On a donc bien:

$$\forall x > 0, \ 0 \leqslant f(x) \leqslant \frac{1}{2x}$$

4. Par encadrement, on en déduit alors que

$$\lim_{x \to +\infty} f(x) = 0$$

Puis, par imparité, on en déduit que :

$$\lim_{x \to -\infty} f(x) = -\lim_{x \to +\infty} f(x) = 0$$