1 Calculs de dérivées, étude de fonctions

Soit f la fonction définie par $f(x) = \frac{\sqrt{\ln(x)}}{x}$.

Montrer que f réalise une bijection de $[\sqrt{e}, +\infty[$ vers un intervalle J à préciser.

Soit f une fonction définie et dérivable sur \mathbb{R} .

Montrer que si f est paire, alors sa dérivée est impaire.

Montrer que si f est impaire, alors sa dérivée est paire.

Montrer les inégalités suivantes :

1.
$$\forall x \in \mathbb{R}, \quad e^x \geqslant x + 1.$$

2.
$$\forall x \in]-1, +\infty[, \frac{x}{x+1} \le \ln(1+x) \le x.$$

3.
$$\forall x \in \mathbb{R}, \quad |\sin(x)| \leq |x|$$

4.
$$\forall x \in \mathbb{R}, \quad \cos(x) \geqslant 1 - \frac{x^2}{2}.$$

5.
$$\forall x \in \left[0, \frac{\pi}{2}\right[, \quad 2\sin(x) + \tan(x) \geqslant 3x\right]$$

- Montrer que pour u > 0 et $v \in \mathbb{R}$: $uv \leq u \ln(u) + e^{v-1}$.
- Montrer que pour tout $x \in \mathbb{R}^*$, on a : $\operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$ 5
- Montrer que la fonction $f: x \longmapsto 2\operatorname{Arctan}\left(\sqrt{x^2+1}-x\right) + \operatorname{Arctan}(x)$ est constante sur $\mathbb R$ et déterminer sa 6 valeur.
- Soit f définie sur \mathbb{R} par : $f(x) = \begin{cases} e^{-1/x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.

Montrer que f est dérivable sur \mathbb{R} et calculer sa dérivée.

- On considère la fonction f définie par $f(x) = \frac{2 + 3\ln(x)}{1 \ln(x)}$.
 - 1. Démontrer que f réalise une bijection de e, $+\infty$ sur un intervalle J que l'on précisera.
 - 2. Déterminer $f^{-1}(-4)$. Justifier que f^{-1} est dérivable en -4 et calculer $(f^{-1})'(-4)$.
- Soit f la fonction définie sur]0,1[par $:f(x)=\ln\left|\frac{x-1}{x}\right|-x.$
 - 1. Montrer que f réalise une bijection de]0,1[vers un intervalle J à déterminer.
 - 2. Déterminer $f^{-1}\left(-\frac{1}{2}\right)$. Justifier que f^{-1} est dérivable sur \mathbb{R} et calculer $(f^{-1})'\left(-\frac{1}{2}\right)$.
- **10** La fonction $f: x \longmapsto \frac{x}{1+|x|}$ est-elle de classe \mathcal{C}^1 sur \mathbb{R} ?
- 11 En reconnaissant des taux d'accroissements, déterminer les limites suivantes :

$$1. \lim_{x \to 0} \frac{\sqrt{\cos(x)} - 1}{x}$$

$$3. \lim_{x \to 0} \frac{\sin(x)}{x}$$

5.
$$\lim_{x \to 0} \frac{e^{-x} - 1}{x}$$

$$2. \lim_{x \to 1} \frac{x-1}{\ln(x)}$$

3.
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$
4.
$$\lim_{x \to 0} \frac{\ln(\cos(x))}{x}$$

5.
$$\lim_{x \to 0} \frac{e^{-x} - 1}{x}$$
6.
$$\lim_{x \to 0} \frac{\operatorname{Arctan}(x)}{2x}$$

2 Équivalents usuels en 0

12 Calculer les limites des expressions suivantes aux valeurs indiquées.

1.
$$\frac{\ln(1+x^2)}{x}$$
 en 0

$$2. \ \frac{1}{x} \ln \left(\frac{1+x}{1-x} \right) \text{ en } 0$$

3.
$$\frac{\ln(x-1)}{x-2}$$
 en 2

4.
$$\frac{\ln(2+x) - \ln(2)}{\exp(\sqrt{1+x}) - e}$$
 en 0

5.
$$\frac{x-1}{x^n-1}$$
 en 1 $(n \in \mathbb{N}^*)$

6.
$$\frac{\ln(4x^2 - 2x + 1)}{x}$$
 en 0 et $+\infty$

7.
$$\frac{x^x - 1}{\ln(1 - \sqrt{x^2 - 1})}$$
 en 1⁺

8.
$$x \ln \left(1 + \frac{1}{x}\right)$$
en $+\infty$

9.
$$\frac{\sqrt{1+x}-1}{e^x-1}$$
 en 0

10.
$$\frac{\ln(2-x^2)}{x-1}$$
 en 1

11.
$$(1+x^2)^{\ln(x)/x}$$
 en 0^+

12.
$$\left(\frac{x+1}{x-1}\right)^x$$
 en $+\infty$

13.
$$\left(1 + \frac{1}{x}\right)^{x^2/2}$$
 en $+\infty$ et $-\infty$

14.
$$\left(\frac{x^2-1}{x^2+1}\right)^{x/2}$$
 en $+\infty$

15.
$$\left(\frac{\ln(x+1)}{\ln(x)}\right)^{x\ln(x)}$$
 en 1⁺ et + ∞

16.
$$\frac{\ln(x+1)}{e^x - \sqrt{1+x}}$$
 en 0

3 Utilisation des Accroissements Finis

13 Montrer que pour tous $x, y \in \mathbb{R}^{+*}$, on a : $\frac{1}{x+y} \leqslant \frac{1}{y} \ln \left(\frac{x+y}{x} \right) \leqslant \frac{1}{x}$.

14 Montrer que pour tout $x \in \mathbb{R}$, on a : $|1 - \cos(x)| \leq |x|$.

15 Montrer que pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a : $|\tan(x)| \geqslant |x|$.

16 Soit *h* la fonction définie par $h(x) = \ln(1 + e^{-x})$.

1. Montrer que h est de classe \mathcal{C}^1 sur son domaine de définition.

2. Démontrer que h admet un unique point fixe α et que $\alpha \in [0,1]$

3. Montrer que : $\forall x \in [0, +\infty[, |h(x) - \alpha| \le \frac{1}{2}|x - \alpha|]$.

1. Montrer que l'équation $e^x = 3 + 2x$, d'inconnue $x \in]-\infty,0]$ admet une unique solution α dans $]-\infty,0]$, puis justifier que $-2 \le \alpha \le -1$.

2. Montrer que : $\forall x \in \mathbb{R}^-, \left| \frac{e^x - 3}{2} - \alpha \right| \leqslant \frac{1}{2} |x - \alpha|.$

4 Exercices plus théoriques

18 Soit $f:[a,b] \to \mathbb{R}$ dérivable. On suppose que f(a)=f'(a)=0, que f(b)>0 et que f'(b)<0. Montrer que f' s'annule sur a,b.

19 Soit f une fonction continue sur $[a, +\infty[$ dérivable sur $]a, +\infty[$ telle que $\lim_{x\to +\infty} f(x) = f(a)$. Montrer qu'il existe $c \in]a, +\infty[$ tel que f'(c) = 0.

20 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b[, telle que $e^{-a}f(a) = e^{-b}f(b)$. Montrer qu'il existe un $c \in]a,b[$ tel que f'(c)=f(c).

21 Soit f une fonction deux-fois dérivable sur $[0, +\infty[$ telle que : $\forall x \ge 0, \quad f''(x) - f(x) \ge 0$ et f(0) = f'(0) = 0. Étudier $g: x \mapsto e^x(f'(x) - f(x))$. En déduire que pour tout $x \ge 0$, on a $f(x) \ge 0$.