CHAPITRE 4

Fonctions d'une variable réelle

"Les mathématiques ne sont pas une moindre immensité que la mer." Victor Hugo

Généralités sur les fonctions 1

Définitions 1.1

Définition 1

Soient I et J deux parties de \mathbb{R} . On appelle f une fonction de I dans J le fait d'associer, à tout élément x de I, au maximum un élément de J noté f(x), et appelé image de x par f.

- On appelle alors domaine de définition de la fonction f le sous-ensemble D_f de I constitué par tous les éléments de I qui ont une image par f, autrement dit tous les x de I tels que f(x) existe.
- J est appelé l'ensemble d'arrivée de f, peut-être plus "gros" que nécessaire.
- Si $y \in J$, on appelle **antécédent** de y tout $x \in D_f$ tel que f(x) = y.

La fonction f se note finalement :

$$f: \begin{array}{ccc} D_f & \longrightarrow & J \\ x & \longmapsto & f(x) \end{array}$$

ou tout simplement:

$$f: x \longmapsto f(x)$$

si les ensembles de départ et d'arrivée sont connus (ou implicites). Une fois la fonction f restreinte à son ensemble de définition, on dit que f est une **application**.

Exemples:

E1 – Soit
$$f: \begin{array}{c} \mathbb{R}\setminus\{0\} & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{x} \end{array}$$
. C'est une fonction de $\mathbb{R}\setminus\{0\}$ dans \mathbb{R} .

E2 – Soit $g: \begin{array}{c} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto e^x \end{array}$. C'est une fonction définie de \mathbb{R} dans \mathbb{R} .

E3 – Soit $h: \begin{array}{c} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto e^x \end{array}$. C'est une fonction définie de \mathbb{R} dans \mathbb{R} .

$$\mathbf{E} \mathbf{2}$$
 – Soit $g: \begin{matrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ r & \longmapsto & e^x \end{matrix}$. C'est une fonction définie de \mathbb{R} dans \mathbb{R} .

E3 – Soit
$$h: \begin{array}{ccc} \mathbb{R} & \longrightarrow &]0, +\infty[\\ x & \longmapsto & e^x \end{array}$$
. C'est presque g , mais on a précisé l'ensemble d'arrivée $(\forall x \in \mathbb{R}, \ e^x > 0)$

Remarques:

- \mathbf{R}_1 Dans une fonction, TOUS les éléments de D_f admettent une (et une seule) image dans J. Cependant, les éléments de J n'ont pas forcément tous un antécédent dans D_f par la fonction : l'ensemble Jpeut être a priori plus "gros" que nécessaire.
- $\mathbf{R2}$ Deux fonctions f et g sont égales si et seulement si :
 - elles ont le même domaine de définition $D_f = D_q$
 - elles ont le même ensemble d'arrivée J,
 - $-- \forall x \in D_f, \ f(x) = g(x)$
- \mathbb{R}_3 Si f et g sont deux fonctions définies sur une partie I de \mathbb{R} , on peut alors créer une combinaison linéaire de f et g, une fonction produit, et parfois une fonction inverse :
 - $\forall \lambda \in \mathbb{R}, \ \forall x \in I, \ (\lambda f + g)(x) = \lambda f(x) + g(x).$

 - $\forall x \in I$, (fg)(x) = f(x)g(x). $\forall x \in I$, $\operatorname{si} g(x) \neq 0$, $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$.

Composition de fonctions 1.2

Définition 2

Soient E, F, G trois parties de \mathbb{R} .

Soit f une fonction de E vers F, et soit g une fonction de F dans G.

On appelle fonction composée de f avec g l'application notée $g \circ f$ définie par :

$$g \circ f : \begin{array}{ccc} E & \longrightarrow & G \\ x & \longmapsto & (g \circ f)(x) = g(f(x)) \end{array}$$

Remarques:

- $\mathbf{R1}$ Pour que $g \circ f$ soit bien définie, l'ensemble d'arrivée de la fonction f doit être inclus dans l'ensemble de départ de la fonction g.
- $\mathbf{R2}$ Si les fonctions existent, on n'a pas forcément $g \circ f = f \circ g$. On dit que la loi \circ n'est pas commutative.

Exemple:

Soient les fonctions :
$$f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 2x-3 \end{array}$$
 et $g: \begin{array}{ccc} \mathbb{R}^{+*} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \ln(x) \end{array}$.

Peut-on définir $f \circ q$?

L'ensemble d'arrivée de g est \mathbb{R} donc on peut bien composer par f ensuite.

On a:

$$\forall x \in \mathbb{R}^{+*}, \ (f \circ g)(x) = f(g(x)) = f(\ln(x)) = 2\ln(x) - 3$$

Peut-on définir $g \circ f$?

 $\overline{\text{L'application } f \text{ va de } \mathbb{R} \text{ dans } \mathbb{R}, \text{ donc a priori, certaines images ne seront pas dans } \mathbb{R}^{+*}$. On ne peut pas écrire $g \circ f$ sur tout \mathbb{R} :

$$2x-3 \in \mathbb{R}^{+*} \iff 2x-3 > 0 \iff 2x > 3 \iff x > \frac{3}{2}$$

Ainsi pour tout $x > \frac{3}{2}$, on peut définir $g \circ f(x)$, et alors on a :

$$\forall x \in \left[\frac{3}{2}, +\infty\right[, \quad g \circ f(x) = g(f(x)) = g(2x - 3) = \ln(2x - 3)\right]$$

1.3 Symétries

Définition 3

Soit f une fonction de D dans \mathbb{R} . On dit que :

• f est **paire** si : $(\forall x \in D, -x \in D)$ et $(\forall x \in D, f(-x) = f(x))$.

La courbe représentative de f est alors symétrique par rapport à l'axe des ordonnées.

• f est **impaire** si : $(\forall x \in D, -x \in D)$ et $(\forall x \in D, f(-x) = -f(x))$.

La courbe représentative de f est alors symétrique par rapport à l'origine du repère.

Remarques:

R1 – La composée d'une fonction paire suivie d'une fonction quelconque est paire.

R2 – La composée de deux fonctions impaires est impaire.

R3 – Une courbe peut admettre plus généralement un axe de symétrie d'équation x=a, ou alors un point de symétrie $\Omega(a,b)$.

Méthode pour rechercher une éventuelle symétrie :

L'ensemble D doit être symétrique par rapport à a. De plus, si pour tout réel h tel que $a+h \in D$:

- f(a+h) = f(a-h), alors la courbe représentative de f est symétrique par rapport à la droite d'équation x = a.
- f(a+h) + f(a-h) = 2b, alors la courbe représentative de f est symétrique par rapport au point $\Omega(a,b)$.

1.4 Périodicité

Définition 4

Soit f une fonction de D dans \mathbb{R} et soit T un réel. On dit que f est T-périodique si :

- $\forall x \in \mathbb{R}$, on a $x \in D \iff x + T \in D$
- $\forall x \in D, \ f(x+T) = f(x)$

Exemples:

Les fonctions trigonométriques sin et cos sont périodiques de période La fonction tan est périodique de période

1.5 Fonctions monotones

Définition 5

Soit $f: I \to \mathbb{R}$ et soit I un intervalle de \mathbb{R} . On dit que :

- f est croissante sur I si : $\forall a, b \in I$, $a < b \Longrightarrow f(a) \leqslant f(b)$.
- f est strictement croissante sur I si : $\forall a, b \in I$, $a < b \Longrightarrow f(a) < f(b)$.
- f est décroissante sur I si : $\forall a, b \in I$, $a < b \Longrightarrow f(a) \geqslant f(b)$.
- f est strictement décroissante sur I si : $\forall a, b \in I$, $a < b \Longrightarrow f(a) > f(b)$.

Remarques:

 ${f R\,1}$ – La composée de deux fonctions de même monotonie est

R2 – La composée de deux fonctions de monotonies contraires est

 $\mathbf{R3}$ – Finalement, c'est comme la règle des signes : $+\times+$ ou $-\times-$ donne + et $+\times-$ ou $-\times+$ donne -

1.6 Fonctions majorées et minorées

Définition 6

Soit $f: D \to \mathbb{R}$. On dit que :

- f est majorée sur D s'il existe $M \in \mathbb{R}$ tel que $\forall x \in D, f(x) \leq M$
- f est minorée sur D s'il existe $m \in \mathbb{R}$ tel que $\forall x \in D, f(x) \geq m$.
- f est bornée sur D si f est majorée et minorée sur D.

Exemple:

La fonction inverse est sur et sur

Remarque:

En particulier, lorsqu'une fonction est minorée par 0, on dit qu'elle est **positive**.

Lorsqu'une fonction est majorée par 0, on dit qu'elle est négative.

Définition 7

Soit $f: I \to \mathbb{R}$ une fonction.

- \bullet On dit que M est un **maximum** de la fonction f sur I si
 - (i) M est un majorant de la fonction f
 - (ii) $\exists x \in I \text{ tel que } f(x) = M$
- ullet On dit que M est un **minimum** de la fonction f sur I si
 - (i) M est un minorant de la fonction f
 - (ii) $\exists x \in I \text{ tel que } f(x) = m$

Définition 8

Soit $f: I \to \mathbb{R}$ une fonction.

- Si f est une fonction majorée sur I, alors l'ensemble des majorants de f admet un plus petit élément, appelé la **borne supérieure de** f. On le note : $\sup_{x \in I} f(x)$
- Si f est une fonction minorée sur I, alors l'ensemble des minorants de f admet un plus grand élément, appelé la **borne inférieure de** f. On le note : $\inf_{x \in I} f(x)$.

Remarque:

Si la borne supérieure est atteinte par la fonction f, alors la borne supérieure devient un maximum. De même pour la borne inférieure qui devient un minimum lorsqu'elle est atteinte.

1.7 Transformations d'une fonction

Exemple:

Dans un repère orthonormé, représenter en bleu la courbe de la fonction définie sur $[0;+\infty[\text{par }f(x)=2x.$ Représenter en rouge la courbe de -f; en vert celle de f+2 et en noir celle de 2f.

Remarque:

Si $f: x \mapsto f(x)$ est une fonction donnée de courbe C_f dans un plan muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, alors :

- La courbe de la fonction $x \mapsto -f(x)$ est la symétrique de \mathcal{C}_f par rapport à l'axe des abscisses.
- La courbe de la fonction $x \mapsto f(-x)$ est la symétrique de \mathcal{C}_f par rapport à l'axe des ordonnées.
- La courbe de la fonction $x \mapsto f(x + \alpha)$ est la translatée horizontale de \mathcal{C}_f de vecteur $-\alpha \overrightarrow{i}$.
- La courbe de la fonction $x \mapsto f(x) + \beta$ est la translatée verticale de C_f de vecteur $\beta \overrightarrow{j}$.
- La courbe de la fonction $x \mapsto \lambda f(x)$ est celle de f dilatée verticalement avec un changement d'échelle.

2 Images et antécédents

2.1 Images directes, images réciproques

Définition 9

Soit $f: I \to J$ une fonction définie sur I.

Si $A \subset I$, on appelle **image directe de** A l'ensemble de toutes les images des éléments de A par la fonction f:

$$f(A) = \{ f(x), \ x \in A \}$$

Si $B \subset J$, on appelle **image réciproque de** B l'ensemble de tous les antécédents des éléments de B par la fonction f:

$$f^{-1}(B) = \{ x \in I \ / \ f(x) \in B \}$$

Remarque:

On peut donc écrire que, si $A \subset I$ et $B \subset J$, $\forall z \in J, z \in f(A) \iff \exists w \in I / z = f(w)$

$$\forall u \in I, u \in f^{-1}(B) \iff f(u) \in B$$

2.2 Fonctions injectives

Définition 10

Soient I et J deux ensembles et soit $f: I \to J$ une fonction de I dans J.

On dit que f est une fonction injective si tous les éléments de J admettent au plus un antécédent, i.e. ils en admettent un ou aucun.

Autrement dit,

$$f$$
 injective $\iff \forall x, x' \in I$, si $f(x) = f(x')$, alors $x = x'$

Remarque:

On a également : f injective $\iff \forall x, x' \in I$, si $x \neq x'$, alors $f(x) \neq f(x')$

Proposition 11

Si I est un intervalle et si $f: I \to J$ est strictement monotone sur I, alors f est injective.

2.3 Fonctions surjectives

Définition 12

Soient I et J deux ensembles et soit $f:I\to J$ une fonction de I dans J.

On dit que f est une fonction surjective si tous les éléments de J admettent au moins un antécédent. Autrement dit,

$$f$$
 surjective $\iff \forall y \in J, \exists x \in I / y = f(x)$

Remarques:

R1 – On a également : f surjective $\iff f(I) = J$.

R2 – Si f est une fonction de I dans J, $f:I\to f(I)$ est toujours surjective.

Exemple:

La fonction carré définie sur $\mathbb R$ à valeurs dans $\mathbb R^+$ est mais pas

2.4 Fonctions bijectives

Définition 13

Soient I et J deux ensembles et soit $f: I \to J$ une fonction de I dans J.

On dit que f est une fonction bijective si tous les éléments de J admettent exactement un et un seul antécédent par la fonction f dans I.

Autrement dit,

$$f$$
 bijective $\iff \forall y \in J, \ \exists \,! \, x \in I \ / \ y = f(x)$

Remarques:

R1 – Soit $f: I \to J$ une fonction. Alors

$$f$$
 bijective \iff $\begin{cases} f \text{ injective} \\ f \text{ surjective} \end{cases}$

R2 – Soit I est un intervalle de \mathbb{R} et soit $f:I\to J$ une fonction strictement monotone sur I. Alors, la fonction $f:I\to f(I)$ est bijective, autrement-dit, f réalise une bijection si on restreint l'espace d'arrivée à f(I).

Définition 14

Si f est bijective de I vers J, alors tout élément y de J admet un et un seul antécédent dans I. On définit ainsi une fonction de J dans I, appelée fonction réciproque, notée f^{-1} . On a alors

$$\forall (x,y) \in I \times J \qquad y = f(x) \Longleftrightarrow x = f^{-1}(y)$$

Remarques:

R1 – Si f est bijective de I sur J, alors f^{-1} est une bijection de J sur I et on a :

$$(f^{-1})^{-1} = f$$

R2 – Si f est bijective de I dans J, alors f est inversible et sa fonction réciproque est f^{-1} , autrement dit :

$$\forall x \in I, \ f^{-1}(f(x)) = x$$
 et $\forall y \in J, \ f(f^{-1}(y)) = y$

R3 – Si on a une fonction f de I dans J bijective, alors pour tout $x \in I$ et $y \in J$, on a:

$$y = f(x) \Longleftrightarrow x = f^{-1}(y)$$

Donc si on connaît y = f(x), il suffit d'exprimer x en fonction y pour déterminer l'expression de la fonction réciproque.

- \mathbb{R}^4 Les courbes de f et f^{-1} sont symétriques par rapport à la première bissectrice (i.e. la droite d'équation y=x).
- R5 Si $f: I \to J$ est bijective et strictement monotone sur I, alors f^{-1} est strictement monotone sur J, de même monotonie que f.

Fonctions usuelles à connaître 3

Fonctions affines et linéaires 3.1

Définition 15

Les **fonctions affines** sont les fonctions f du type :

$$\forall x \in \mathbb{R}, \quad f(x) = ax + b$$
 avec $(a, b) \in \mathbb{R}^2$

Remarques:

- **R1** Lorsque b=0 (on a $\forall x \in \mathbb{R}, f(x)=ax$), on dit que f est une **fonction linéaire**.
- **R2** Lorsque a = 0 (on a $\forall x \in \mathbb{R}$, f(x) = b), on dit que f est une **fonction constante**.
- R3 Les fonctions affines ont pour courbe représentative une droite non verticale. Le nombre a représente le coefficient directeur (ou pente) et b l'ordonnée à l'origine.
- ${f R4}$ Les fonctions affines sont des fonctions polynomiales, de degré 1.
- **R5** Si a > 0, f est strictement croissante sur \mathbb{R} .
- **R**6 Si a < 0, f est strictement décroissante sur \mathbb{R} .

3.2 Fonction carré, fonctions polynomiales de degré 2

Définition 16

Les fonctions polynomiales de degré 2 sont les fonctions f du type :

$$\forall x \in \mathbb{R}, \ f(x) = ax^2 + bx + c$$
, avec $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$

Remarques:

- **R1** La fonction **carré** $x \mapsto x^2$ est paire, a pour courbe une **parabole**, est décroissante sur $]-\infty,0]$, croissante sur $[0, +\infty[$, admettant donc un minimum en 0.
- R2 Toutes les fonctions polynomiales de degré 2 ont pour courbe également une parabole car :

$$\forall x \in \mathbb{R}, \ f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{(b^2 - 4ac)}{4a} = a(x + \alpha)^2 + \beta$$

La courbe est donc celle de la fonction carré, décalée horizontalement suivant $-\alpha \overrightarrow{i}$, puis dilatée suivant un coefficient a, puis translatée verticalement suivant $\beta \vec{j}$.

- **R3** Si a > 0, la fonction $x \mapsto ax^2 + bx + c$ est donc une parabole tournée « vers le haut », ayant son
- minimum en $-\frac{b}{2a}$.

 R4 Si a < 0, la fonction $x \mapsto ax^2 + bx + c$ est donc une parabole tournée « vers le bas », ayant son maximum en $-\frac{b}{2a}$.

3.3 Fonction inverse

Définition 17

La **fonction inverse** est la fonction f définie sur \mathbb{R}^* par $\forall x \in \mathbb{R}^*$, $f(x) = \frac{1}{x}$.

Remarques:

 ${f R\, 1}$ – La fonction inverse est impaire.

 $\mathbf{R2}$ – La courbe de la fonction inverse est une **hyperbole**. $\mathbf{R3}$ – La fonction inverse est décroissante sur] – ∞ , 0[et décroissante sur]0, + ∞ [.

si
$$0 < a \leqslant b$$
 alors $0 < \frac{1}{b} \leqslant \frac{1}{a}$, si $a \leqslant b < 0$ alors $\frac{1}{b} \leqslant \frac{1}{a} < 0$

 ${f R4}$ – La fonction inverse n'est pas décroissante sur ${\Bbb R}^*$, cela n'a pas de sens puisque ${\Bbb R}^*$ n'est pas un

- Plus généralement, on appelle fonctions homographiques les fonctions qui sont le quotient de deux fonctions affines, i.e. du type:

$$\forall x \in \mathbb{R} \setminus \{-\frac{d}{c}\}, \ f(x) = \frac{ax+b}{cx+d}, \quad \text{avec } (a,b,c,d) \in \mathbb{R}^4, \ (c,d) \neq (0,0)$$

Toute fonction homographique peut en fait se mettre sous la forme :

$$f(x) = \frac{\alpha}{x + \beta} + \gamma$$

donc sa courbe est une hyperbole (celle de la fonction inverse), translatée et éventuellement dilatée.

3.4 Valeur absolue d'un réel

Définition 18

La fonction valeur absolue est définie sur \mathbb{R} par $|\forall x \in \mathbb{R}, \ f(x) = |x| = \begin{cases} x & \text{si } x \geq 0 \\ -x & \text{si } x \leq 0 \end{cases}$

Remarque:

La fonction valeur absolue est dite affine-par-morceaux, puisqu'on obtient son graphe comme une concaténation de droites.

3.5 Fonctions puissances et racines *n*-ièmes.

Définition 19

La fonction racine carrée est la fonction f définie sur $[0, +\infty[$ par : $\forall x \ge 0, \quad f(x) = \sqrt{x} = x^{1/2}.$

Remarques:

R1 – La fonction carré n'est pas bijective sur \mathbb{R} (par exemple 4 admet plusieurs antécédents (2 et -2)), mais sa restriction à \mathbb{R}^+ est strictement croissante, donc bijective de \mathbb{R}^+ dans $g(\mathbb{R}^+)$.

$$g: \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x^2 \end{array}$$

g est bijective, et sa fonction réciproque est la fonction racine carrée.

R2 – La courbe de la fonction racine carrée est donc la symétrique d'une moitié de parabole.

R3 – Au voisinage de 0, la courbe part dans une direction verticale.

Définition 20

Les fonctions puissances sont les fonctions f définies sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ f(x) = x^n, \quad \text{avec } n \in \mathbb{N}$$

Remarques:

R1 – Les fonctions puissances $x \mapsto x^n$ avec $n \ge 1$ sont toujours strictement croissantes sur \mathbb{R}^+ .

 \mathbb{R}^2 – Les fonctions puissances $x\mapsto x^n$ avec n pair, $n\geqslant 2$, sont des fonctions paires. Leur courbe est symétrique par rapport à l'axe des ordonnées, et elles sont donc strictement décroissantes sur \mathbb{R}^- , et admettent un minimum en 0.

 $\mathbb{R}3$ – Les fonctions puissances $x\mapsto x^n$ avec n impair sont des fonctions impaires. Leur courbe est symétrique par rapport à l'origine, et elles sont donc strictement croissantes sur \mathbb{R} .

Définition 21

Pour n pair, la fonction $x \mapsto x^n$ est bijective de \mathbb{R}^+ vers \mathbb{R}^+ . Sa bijection réciproque est la **fonction racine** n-ième définie sur \mathbb{R}^+ par :

$$\forall x \in \mathbb{R}^+, \quad f(x) = \sqrt[n]{x} = x^{1/n}$$

Sa courbe est la symétrique par rapport à la première bissectrice de la courbe de la fonction $x \mapsto x^n$ définie sur \mathbb{R}^+ .

Définition 22

Pour n impair, la fonction $x \mapsto x^n$ est bijective de \mathbb{R} vers \mathbb{R} . Sa bijection réciproque est la **fonction racine** n-ième définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = \sqrt[n]{x} = x^{1/n}$$

Sa courbe est la symétrique par rapport à la première bissectrice de la courbe de la fonction $x \mapsto x^n$.

3.6 Fonctions logarithme népérien et exponentielle

Définition 23

La fonction **logarithme népérien**, notée ln, est définie comme l'unique primitive qui s'annule en 1 de la fonction définie sur \mathbb{R}^{+*} par $x \mapsto \frac{1}{x}$.

Remarques:

R1 – Par définition, la fonction ln est définie uniquement sur $]0, +\infty[$.

R2 – Sa dérivée sur \mathbb{R}^{+*} étant la fonction inverse positive, la fonction ln est strictement croissante sur $]0, +\infty[$.

Définition 24

La fonction $\ln : \mathbb{R}^{+*} \longrightarrow \mathbb{R}$ est une fonction bijective : elle admet une fonction réciproque, qu'on appelle la **fonction exponentielle** : $\exp : \mathbb{R} \longrightarrow \mathbb{R}^{+*}$. On la note $x \mapsto e^x$ ou $x \mapsto \exp(x)$.

Remarques:

 ${\bf R}{\bf 1}$ – La fonction exponentielle est strictement croissante sur ${\mathbb R}$ car ln l'est aussi.

R2 – Pour tout $x \in \mathbb{R}$ et tout $y \in]0, +\infty[$, on a :

$$y = e^x \iff x = \ln(y)$$

 \mathbb{R}_3 – La fonction exp est bijective uniquement si on précise que son ensemble d'arrivée est \mathbb{R}^{+*} .

R4 – Les fonctions ln et exp étant réciproques l'une de l'autre, leurs courbes sont symétriques par rapport
à la première bissectrice.

R5 – Les fonctions puissance réelle sont des fonctions exponentielles. Si a > 0, la fonction :

$$f(x) = a^x$$

est définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ f(x) = a^x = e^{x \ln(a)}$$

On parle parfois de fonction exponentielle de base a.

Proposition 25

Inégalités remarquables

Pour tout réel x, on a:

 $e^x \geqslant x+1$

Pour tout réel x strixtement positif, on a :

$$\ln(x) \leqslant x - 1$$

Remarque:

Ces inégalités sont souvent utilisées mais doivent être redémontrées si besoin, en étudiant une fonction adéquate.

3.7 Fonctions trigonométriques

Définition 26

Les fonctions cosinus et sinus, notées cos et sin, sont définies sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \ \cos(x) = \operatorname{Re}(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2}$$

$$\forall x \in \mathbb{R}, \ \sin(x) = \operatorname{Im}(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i}$$

Remarques:

R1 – La fonction cos est paire puisque : $\forall x \in \mathbb{R}, \cos(-x) = \cos(x)$.

R2 – La fonction sin est impaire puisque : $\forall x \in \mathbb{R}, \sin(-x) = -\sin(x)$. **R3** – Les fonctions cos et sin sont 2π -périodiques.

 $\mathbb{R}4 - \forall x \in \mathbb{R}$, $\sin(x + \frac{\pi}{2}) = \cos(x)$. Ainsi, la courbe de la fonction sin est la translatée de la courbe de la fonction cos suivant $-\frac{\pi}{2}\overrightarrow{i}$.

Définition 27

La fonction **tangente**, notée tan est définie sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$ par

$$\forall x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}, \ \tan(x) = \frac{\sin(x)}{\cos(x)}$$

Remarques:

 ${f R1}$ – La fonction tan est impaire. ${f R2}$ – La fonction tan est π -périodique. ${f R3}$ – La fonction tan est strictement croissante sur chacun des intervalles sur lesquels elle est définie.

Définition 28

La fonction tangente est strictement croissante sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, à valeurs dans \mathbb{R} . Elle est bijective de $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ vers \mathbb{R} et admet donc une bijection réciproque, appelée fonction arctangente, notée Arctan :

Remarques:

R1 – La fonction Arctan et tan vérifient donc :

$$\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \quad \operatorname{Arctan}(\tan(x)) = x \quad \text{et} \quad \forall y \in \mathbb{R}, \quad \tan(\operatorname{Arctan}(y)) = y$$

R2 – La fonction Arctan est strictement croissante et impaire puisque tan l'est et en particulier Arctan(0) = 0. R3 – Puisque $tan(\pi/4) = 1$ et $tan(-\pi/4) = -1$, on en déduit que $Arctan(1) = \frac{\pi}{4}$ et $Arctan(-1) = \frac{-\pi}{4}$