On considère une fonction f, continue sur $]0, +\infty[$, qui vérifie les hypothèses (H) suivantes :

$$(H) : \begin{cases} (i) & f(1) = 0, \\ (ii) & f \text{ est d\'erivable en 1 avec } f'(1) \neq 0, \\ (iii) & (x - 1)f(x) > 0 \text{ pour tout } x > 0 \text{ et } x \neq 1, \\ (iv) & \lim_{x \to 0^+} \frac{\sqrt{x}}{f(x)} = 0 \end{cases}$$

On pose enfin, pour tout x > 0 tel que $x \neq 1$,

$$G(x) = \int_{x}^{x^2} \frac{1}{f(t)} dt$$

- 1. Montrer que G est ainsi bien définie. Quel est le signe de G(x)?
- 2. On pose $H(x) = \frac{1}{f'(1)} \int_{x}^{x^2} \frac{1}{t-1} dt$.
 - (a) Calculer $\lim_{x\to 1} H(x)$.
 - (b) Justifier que $f(x) \sim_{x \to 1} (x-1)f'(1)$.
 - (c) Montrer que H(x) G(x) tend vers 0 quand $x \to 1$.
 - (d) En déduire que G se prolonge pas continuité en 1 et donner la valeur λ permettant ce prolongement.
- 3. Montrer que G se prolonge par continuité en 0^+ par 0. On note \widetilde{G} la fonction G ainsi prolongée en 0 et en 1.
- 4. Montrer que G est de classe C^1 sur $]0,1[\cup]1,+\infty[$ et donner l'expression de G' en fonction de f.
- 5. Montrer que la fonction $f: x \mapsto \ln(x)$ vérifie les hypothèses (H) de l'énoncé. Etudier alors les variations de la fonction \widetilde{G} associée, en particulier la limite en $+\infty$ et la dérivabilité en 1.