Le devoir comporte six courts exercices indépendants, qui peuvent être abordés dans un ordre laissé au choix du candidat. Chaque exercice est prévu à titre indicatif pour une durée approximative de 15-20 mn.

Le sujet est rédigé sur 1 seule page. L'usage de toute calculatrice ou de tout moyen de communication est interdit.

Exercice 1

Soit
$$A = \begin{pmatrix} -3 & 5 & 2 \\ -1 & 3 & 2 \\ 2 & -10 & -6 \end{pmatrix}$$
. On admet qu'on a $(A + 2I)^2 = 0$.

- 1. Déterminer les valeurs propres de A.
- 2. La matrice A est-elle diagonalisable?

Exercice 2

Soit E un espace vectoriel de dimension finie. Soit $f \in \mathcal{L}(E)$ vérifiant $\mathrm{Ker}(f) = \mathrm{Ker}(f^2)$.

- 1. Montrer que $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}.$
- 2. Montrer que $E = \text{Ker}(f) \oplus \text{Im}(f)$.

Exercice 3

Soit f un endomorphisme de \mathbb{R}^3 admettant trois valeurs propres distinctes : λ_1 , λ_2 , λ_3 .

- 1. Justifier que f est diagonalisable et déterminer la dimension de chacun de ses sous-espaces propres.
- 2. Soit g un endomorphisme de \mathbb{R}^3 tel que $f \circ g = g \circ f$.
 - (a) Soit x un vecteur propre de f. Calculer f(g(x)) et en déduire que g(x) est soit le vecteur nul, soit un vecteur propre de f.
 - (b) Montrer que tout vecteur propre de f est un vecteur propre de g.
 - (c) En déduire que g est diagonalisable.

Exercice 4

- 1. Montrer que l'intégrale $I = \int_0^{+\infty} \frac{dx}{e^x + e^{-x}}$ est convergente.
- 2. Calculer I à l'aide du changement de variable $u = e^x$.

Exercice 5

- 1. Montrer que pour tout réel $x \in \mathbb{R}$, $\int_1^{+\infty} e^{-t} t^{x-1} dt$ converge.
- 2. Montrer que pour tout réel x > 0, $\int_0^1 e^{-t} t^{x-1} dt$ converge.
- 3. On admet que $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$.

 Calculer l'intégrale $I = \int_0^{+\infty} t^{-1/2} e^{-t} dt$ (on justifiera l'existence de l'intégrale I, et on utilisera le changement de variable $u = \sqrt{t}$).

Exercice 6

On pose pour $n \geqslant 1$, $u_n = \frac{n^n e^{-n}}{n!}$ et $v_n = \ln\left(\frac{u_{n+1}}{u_n}\right)$.

- 1. (a) Montrer que $v_n \sim \frac{-1}{n \to +\infty} \frac{-1}{2n}$.
 - (b) Justifier que la série $\sum_{n\geqslant 1} v_n$ diverge.
 - (c) En déduire que la suite (u_n) converge.
- 2. On pose pour $n \ge 1$, $\alpha_n = u_n \sqrt{n}$ et $\beta_n = \ln(\alpha_{n+1}) \ln(\alpha_n)$.
 - (a) Montrer que $\beta_n \sim \frac{1}{n \to +\infty} \frac{1}{12n^2}$.
 - (b) Justifier que la série $\sum_{n\geqslant 1}\beta_n$ converge.
 - (c) En déduire que la suite (α_n) converge.

*** Fin du sujet ***