ENS 2008 - Exercice 1

On considère dans cet exercice un \mathbb{R} -espace vectoriel E, de dimension $n \in [1, 4]$, et on cherche à caractériser les endomorphismes u de E tels que $u \circ u = -Id_E$ où Id_E désigne l'application identité de E. On utilisera la notation $u^2 = u \circ u$.

- 1. Soit u tel que $u^2 = -Id_E$. Quelles sont les valeurs propres de u^2 ? L'endomorphisme u admet-il des valeurs propres?
- 2. Lorsque n=1, montrer que tout endomorphisme de E est de la forme λId_E , avec $\lambda \in \mathbb{R}$. En déduire qu'il n'existe pas d'endomorphisme u tel que $u^2=-Id_E$ dans ce cas.
- 3. On considère dans cette question le cas $n \in \{2,3,4\}$ et on suppose, pour commencer, qu'il existe un endomorphisme u tel que $u^2 = -Id_E$. Soit un élément x de E, non nul : montrer que (x, u(x)) forme un système libre.

 On pourra par exemple considérer deux réels λ, μ tels que
 - On pourra par exemple considérer deux réels λ , μ tels que $\lambda x + \mu u(x) = 0$ et en tirer que $\lambda^2 + \mu^2 = 0$.
- 4. En déduire, lorsque n=2, une représentation matricielle de tout u qui vérifie $u^2=-Id_E$; et préciser alors tous les endomorphismes u tels que $u^2=-Id_E$.
- 5. On passe ici au cas n=4.
 - (a) On suppose à nouveau, pour commencer, qu'il existe u tel que $u^2 = -Id_E$ et on considère un élément x de E, non nul. Montrer qu'il existe un élément y de E tel que (x, u(x), y, u(y)) forme une base de E.
 - (b) Préciser alors tous les endomorphismes u tels que $u^2 = -Id_E$.
- 6. Montrer que si pour n=3, il existait un endomorphisme u sur E tel que $u^2=-Id_E$, alors il existerait un système libre à quatre éléments dans E. En déduire qu'il n'existe donc pas de tel endomorphisme.