Intégrales impropres

Intégrales impropres 10.1

Définition 1

On appelle **intégrale impropre** toute intégrale du type $\int_a^b f(t)dt$ lorsque $a,b \in \{\pm \infty\}$ et si f est continue sur a, b mais peut-être pas en a et/ou b.

Remarque:

Lorsque f est continue sur [a, b], il n'y a aucun problème, l'intégrale $\int_a^b f(t)dt$ existe.

10.1.1 Intégration sur un intervalle [a, b] ou [a, b]

Définition 2

Soient a < b deux réels. Soit f une fonction continue par morceaux sur l'intervalle [a, b[. Si la fonction $x \mapsto \int_a^x f(t)dt$ (i.e. la primitive de f qui s'annule en a) admet une limite finie lorsque x tend vers b^- , on dit que :

- l'intégrale de f sur [a,b[converge,
- l'intégrale $\int_a^b f(t)dt$ est convergente, f est intégrable sur [a,b[,

et on pose

$$\int_{a}^{b} f(t)dt = \lim_{x \to b} \int_{a}^{x} f(t)dt$$

Remarque:

De la même manière, lorsque f est continue par morceauxsur]a,b], $\int_a^b f(t)dt = \lim_{x\to a} \int_x^b f(t)dt$ lorsque cette limite existe

Exemples:

E1 – Quelle est la nature de l'intégrale $\int_0^1 \ln(t) dt$?

La fonction $t\mapsto \ln(t)$ est continue sur]0,1], donc on a un problème en 0. On pose $x\in]0,1].$ On a

$$\int_{x}^{1} \ln(t)dt = \left[t \ln(t) - t\right]_{x}^{1} = -1 - x \ln(x) + x$$

Donc

$$\lim_{x \to 0} \int_{x}^{1} \ln(t)dt = \lim_{x \to 0} (-1 - x \ln(x) + x) = -1$$

Donc l'intégrale $\int_0^1 \ln(t) dt$ est convergente et

$$\int_0^1 \ln(t)dt = -1$$

E 2 -

E3 – Quelle est la nature de l'intégrale $\int_0^1 \frac{1}{t} dt$?

La fonction $t \mapsto \frac{1}{t}$ est continue sur]0,1], donc on a un problème en 0. On pose $x \in]0,1]$. On a

$$\int_{x}^{1} \frac{1}{t} dt = \left[\ln(t) \right]_{x}^{1} = -\ln(x)$$

Donc

$$\lim_{x \to 0} \int_{x}^{1} \frac{1}{t} dt = \lim_{x \to 0} \left(-\ln(x) \right) = +\infty$$

Donc l'intégrale $\int_0^1 \frac{1}{t} dt$ ne converge pas, on dit qu'elle est **divergente**.

Proposition 3

Soit f une fonction continue sur [a,b[telle que f soit prolongeable par continuité en b (i.e. f admet une limite finie en b^-). Alors l'intégrale $\int_a^b f(t)dt$ converge.

Exemple:

Quelle est la nature de l'intégrale $\int_0^1 \frac{\ln(1+t)}{t} dt$?

La fonction $f: t \mapsto \frac{\ln(1+t)}{t}$ est continue sur]0,1], donc on a un problème a priori en 0.

$$\lim_{t \to 0} \frac{\ln(1+t)}{t} = 1$$

donc on peut prolonger la fonction f par continuité en posant f(0) = 1.

Ainsi, il n'y a en fait pas de problème car on a l'intégrale d'une fonction continue sur un segment. Ainsi, l'intégrale $\int_0^1 \frac{\ln(1+t)}{t} dt \text{ est convergente.}$

Intégration sur un intervalle $[a, +\infty[$ ou $]-\infty, a]$

Définition 4

Soit $a \in \mathbb{R}$. Soit f une fonction continue par morceaux sur l'intervalle $[a, +\infty[$.

Si la fonction $x \mapsto \int_a^x f(t)dt$ (i.e. la primitive de f qui s'annule en a) admet une limite finie lorsque x tend vers $+\infty$, on dit que :

- l'intégrale de f sur $[a, +\infty[$ converge,
- l'intégrale $\int_a^{+\infty} f(t)dt$ est convergente, f est intégrable sur $[a, +\infty[$,

et on pose

$$\int_{a}^{+\infty} f(t)dt = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

Remarque:

On définit de la même façon l'intégrale

$$\int_{-\infty}^{a} f(t)dt$$

lorsqu'elle existe.

Exemples:

E1 – Quelle est la nature de l'intégrale $\int_0^{+\infty} e^{-t} dt$?

La fonction $f: t \mapsto e^{-t}$ est continue sur $[0, +\infty[$, donc on a un problème a priori seulement en $+\infty$. On pose $x \in [0, +\infty[$. On a

$$\int_0^x e^{-t} dt = \left[-e^{-t} \right]_0^x = 1 - e^{-x}$$

Donc

$$\lim_{x \to +\infty} \int_0^x e^{-t} dt = \lim_{x \to +\infty} (1 - e^{-x}) = 1$$

Donc l'intégrale $\int_0^{+\infty} e^{-t} dt$ est convergente et

$$\int_0^{+\infty} e^{-t} dt = 1$$

E2 – Quelle est la nature de l'intégrale $\int_{1}^{+\infty} \frac{1}{t} dt$?

La fonction $f: t \mapsto \frac{1}{t}$ est continue sur $[1, +\infty[$, donc on a un problème a priori seulement en $+\infty$. On pose $x \in [1, +\infty[$. On a

$$\int_{1}^{x} \frac{1}{t} dt = \left[\ln(t)\right]_{1}^{x} = \ln(x)$$

Donc

$$\lim_{x \to +\infty} \int_{1}^{x} \frac{1}{t} dt = \lim_{x \to +\infty} \ln(x) = +\infty$$

Donc l'intégrale $\int_{1}^{+\infty} \frac{1}{t} dt$ est divergente.

10.1.3Intégration sur un intervalle quelconque

Définition 5

Soient $a, b \in \mathbb{R} \cup \{\pm \infty\}$ et soit f une fonction continue par morceaux sur [a, b].

On pose $c \in]a,b[$. Si les intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ sont convergentes, alors on dit que :

- l'intégrale $\int_{a}^{b} f(t)dt$ est convergente
- -f est intégrable sur a, b

et on pose

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Remarques:

- R1 Aucune propriété n'est à connaître sur les intégrales impropres. Pour faire des calculs, on se ramène TOUJOURS à une intégrale sur un segment
 R2 En particulier, on ne fait pas de changement de variable ou d'intégration par parties sur une intégrale impropre.

Critères de convergence 10.2

10.2.1Intégrales de Riemann

Théorème 6

Intégrales de Riemann

$$\int_{0}^{1} \frac{1}{t^{\alpha}} dt \begin{cases} converge \ pour \ \alpha < 1 \\ diverge \ pour \ \alpha \geqslant 1 \end{cases}$$
$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \begin{cases} converge \ pour \ \alpha > 1 \\ diverge \ pour \ \alpha \leqslant 1 \end{cases}$$

Démonstration:

- Pour $\alpha = 1$, on a déjà vu que $\int_0^1 \frac{1}{t} dt$ ne converge pas.
- Pour $\alpha \neq 1$. La fonction $t \mapsto \frac{1}{t^{\alpha}}$ est continue sur]0,1]. On considère $x \in]0,1[$. Alors

$$\int_{x}^{1} \frac{1}{t^{\alpha}} dt = \left[-\frac{1}{(\alpha - 1)t^{\alpha - 1}} \right]_{x}^{1} = \frac{1}{(\alpha - 1)x^{\alpha - 1}} - \frac{1}{\alpha - 1}$$

Donc cette quantité admet une limite finie lorsque $x \to 0$ si et seulement si $\alpha - 1 < 0$, c'est-à-dire si $\alpha < 1$.

- Pour $\alpha = 1$, on a déjà vu que $\int_{1}^{+\infty} \frac{1}{t} dt$ ne converge pas. Pour $\alpha \neq 1$. La fonction $t \mapsto \frac{1}{t^{\alpha}}$ est continue sur]0,1]. On considère x > 1. Alors

$$\int_{1}^{x} \frac{1}{t^{\alpha}} dt = \left[-\frac{1}{(\alpha - 1)t^{\alpha - 1}} \right]_{1}^{x} = \frac{1}{\alpha - 1} - \frac{1}{(\alpha - 1)x^{\alpha - 1}}$$

Donc cette quantité admet une limite finie lorsque $x \to +\infty$ si et seulement si $\alpha - 1 > 0$, c'est-à-dire si $\alpha > 1$.

10.2.2 Théorèmes pour les fonctions positives

Théorème 7

Théorème de comparaison

Soient a < b, $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

Soient f et g deux fonctions continues et positives sur [a, b[telles que

$$\forall t \in [a, b[, 0 \leqslant f(t) \leqslant g(t)]$$

- $Si \int_a^b g(t)dt$ converge, alors $\int_a^b f(t)dt$ converge.
- $Si \int_a^b f(t)dt$ diverge, alors $\int_a^b g(t)dt$ diverge.

Exemple:

Quelle est la nature de l'intégrale $\int_0^{+\infty} \frac{1}{t^2+t+1} dt$?

La fonction $f: t \mapsto \frac{1}{t^2+t+1}$ est continue sur $[0, +\infty[$, donc on a un problème a priori seulement en $+\infty$.

Pour tout $t \in [0, +\infty[$, on a

$$0\leqslant \frac{1}{t^2+t+1}\leqslant \frac{1}{t^2}$$

Or, l'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann qui converge, donc d'après les critères de convergence

sur les intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{1}{t^2+t+1} dt$ converge.

Par ailleurs, l'intégrale $\int_0^1 \frac{1}{t^2 + t + 1} dt$ est convergente puisque la fonction $t \mapsto \frac{1}{t^2 + t + 1}$ est continue sur [0, 1].

En conclusion, l'intégrale $\int_0^{+\infty} \frac{1}{t^2+t+1} dt$ est une intégrale convergente.

Théorème 8

Théorème de négligeabilité

Soient a < b, $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

Soient f et g deux fonctions continues et positives sur [a,b[telles que

$$f(t) \underset{t \to b^{-}}{=} o\left(g(t)\right)$$

- $Si \int_a^b g(t)dt$ converge, alors $\int_a^b f(t)dt$ converge.
- $Si \int_a^b f(t)dt \ diverge, \ alors \int_a^b g(t)dt \ diverge.$

Théorème 9

Théorème d'équivalence

Soient $a < b, a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

Soient f et g deux fonctions continues et positives sur [a, b[telles que

$$f(t) \underset{t \to b^{-}}{\sim} g(t)$$

Alors les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ sont de même nature.

Exemple:

Quelle est la nature de l'intégrale $\int_0^{+\infty} \frac{t^2 - 5t + 7}{(t+1)(4t^2 - t + 2)} dt$?

La fonction $f: t \mapsto \frac{t^2 - 5t + 7}{(t+1)(4t^2 - t + 2)}$ est continue sur $[0, +\infty[$ (c'est une fraction rationnelle et le dénominateur ne s'annule pas sur $[0, +\infty[$), donc on a un problème a priori seulement en $+\infty$.

Au voisinage de $+\infty$, on a :

$$\frac{t^2 - 5t + 7}{(t+1)(4t^2 - t + 2)} \underset{t \to +\infty}{\sim} \frac{t^2}{4t^3} = \frac{1}{4t}$$

Or, l'intégrale $\int_1^{+\infty} \frac{1}{4t} dt$ est une intégrale de Riemann qui diverge, donc d'après les critères d'équivalence sur les intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{t^2 - 5t + 7}{(t+1)(4t^2 - t + 2)} dt$ diverge.

En conclusion, l'intégrale $\int_0^{+\infty} \frac{t^2 - 5t + 7}{(t+1)(4t^2 - t + 2)} dt$ est une intégrale divergente.

10.2.3 Intégrales absolument convergentes

Définition 10

Soient $a, b \in \mathbb{R} \cup \{\pm \infty\}$. Soit f une fonction continue sur]a, b[. On dit que l'intégrale $\int_a^b f(t)dt$ est absolument convergente si l'intégrale $\int_a^b |f(t)| dt$ est convergente.

Théorème 11

Si l'intégrale $\int_a^b f(t)dt$ est absolument convergente, alors l'intégrale est convergente.

Remarque:

La réciproque est fausse! On peut avoir $\int_a^b f(t)dt$ qui converge et $\int_a^b |f(t)|dt$ qui diverge.