

INSTITUT NATIONAL DE LA STATISTIQUE ET DES ÉTUDES ÉCONOMIQUES

ECOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE DE L'INFORMATION

Concours d'élève ingénieur de l'ENSAI

Concours d'attaché statisticien de l'INSEE

MAI 2010

SPECIALITE ECONOMIE

Composition de mathématiques

Durée : 4 heures

Le sujet comprend 4 pages (y compris celle-ci).

Sans document ;. L'usage des calculatrices est interdit.

Le sujet est composé de 4 exercices indépendants.

Exercice 1.

Dans tout l'exercice, on travaille dans l'espace vectoriel usuel \mathbb{R}^3 muni de sa base canonique $\mathcal{B}_0 = (\vec{i}, \vec{j}, \vec{k})$. On note

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} B = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

et f l'endomorphisme associé à la matrice A, dans la base B_0 .

- Déterminer le noyau et l'image de f et donner pour chacun de ces deux sous-espaces de R³ une base ainsi que sa dimension.
- Montrer que ker f⊕ Im f = R³.
- 3) Calculer A^2 et exprimer le résultat en fonction de A. En déduire pour $n \ge 1$, A^n en fonction de n et A.
- 4) Déterminer, en utilisant la question précédente, une relation entre B², B et la matrice identité de dimension 3. En déduire que la matrice B est inversible et calculer son inverse.
- 5) Calculer B^n pour $n \ge 1$.
- 6) La matrice B est-elle diagonalisable dans M₃(R) ? (où M₃(R) désigne l'ensemble des matrices carrées de taille 3 × 3 à coefficients réels). Déterminer, si c'est possible, une base propre associée à B.

Exercice 2.

On rappelle les valeurs approchées suivantes : $\ln 2 \simeq 0,7 \quad \ln 3 \simeq 1,1, \quad \ln 7 \simeq 1,9.$ Pour tout réel x > -1 on pose $f(x) = x^2 - 4 \ln(1+x)$.

- Etudier les variations de la fonction f et montrer que l'équation f(x) = 0 possède une racine unique notée α dans l'intervalle [2, ⁵/₂].
- 2) On considère la fonction g définie sur] − 1, +∞[par g(x) = x − f(x)/4 et la suite (u_n) définie par u₀ = 2 et pour n ≥ 0, u_{n+1} = g(u_n).
 - 2-a) Montrer que $g([2, \alpha]) \subset [2, \alpha]$.
 - 2-b) Montrer que la suite (u_n) est bien définie et que pour tout n ≥ 0, u_n ∈ [2, α].
 - 2-c) Montrer que la suite (u_n) converge et préciser sa limite.
- 2-d) Montrer que pour tout entier $n \ge 0$, $|u_n \alpha| \le \frac{1}{2 \times 3^n}$. (on pourra étudier la fonction g' sur $[2, \frac{5}{2}]$).

Exercice 3.

On rappelle que

$$\int_{-\infty}^{+\infty} e^{\frac{-\pi^2}{2}} dx = \sqrt{2\pi}$$

et on donne les valeurs approchées suivantes : $\sqrt{\frac{2}{\pi}} \simeq 0, 8$ et $e^{-\frac{1}{2}} \simeq 0, 6$.

On note f la fonction définie par f(x) = 0 si x < 0 et $f(x) = \sqrt{\frac{2}{\pi}} e^{\frac{-x^2}{2}}$ si $x \ge 0$.

- 1) 1-a) Donner la définition d'une densité associée à une variable aléatoire réelle.
 - 1-b) Montrer que la fonction f est une densité.
- 2) Soit X une variable aléatoire réelle de densité f. Calculer les moments d'ordre 1 et 2 de X. En déduire la variance de X.
- On considère les deux fonctions φ et ψ définies sur [0, 1] par

$$\varphi(x) = (e^{-\frac{1}{2}} - 1)x + 1 - e^{-\frac{\pi^2}{2}} \operatorname{et} \psi(x) = e^{-\frac{\pi^2}{2}} - e^{-\frac{1}{2}}(2 - x).$$

- 3-a) Calculer $\varphi'(x)$, $\psi'(x)$, $\varphi''(x)$ et $\psi''(x)$.
- 3-b) Tracer le tableau des variations de chacune des deux fonctions φ et ψ sur [0, 1].
 On montrera en particulier que la fonction φ atteint son minimum en un point α ∈ [0, 1], sans chercher à calculer la valeur de α, ni celle de φ(α).
 - 3-c) Montrer que pour tout $x \in [0, 1]$,

$$(e^{-\frac{1}{2}} - 1)x + 1 \le e^{\frac{-x^2}{2}} \le e^{-\frac{1}{2}}(2 - x).$$

- 3-d) En déduire un encadrement de la probabilité de l'évènement $[0 \le X \le 1]$.
- 4) On admettra dans cette question que la probabilité de l'évènement $[X \ge 2]$ a une valeur approchée égale à $4,5 \times 10^{-2}$. Donner un encadrement de la probabilité conditionnelle de l'évènement $[X \ge 2]$ sachant que $X \ge 1$.

Exercice 4.

Soit E un espace vectoriel réel.

- 1) Soient F₁ et F₂ deux sous-espaces vectoriels de E. Montrer que F₁ ∪ F₂ est un sous-espace vectoriel de E si et seulement si F₁ ⊂ F₂ ou F₂ ⊂ F₁. Pour la condition nécessaire, on pourra prouver la contraposée en considérant x ∈ F₁ \ F₂, y ∈ F₂ \ F₁ et le vecteur x + y.
- 2) Soient F₁, F₂,..., F_k, k sous-espaces vectoriels stricts de E. (ceci signifie que chaque F_i est différent de E). On se propose de montrer, par récurrence sur k, que leur réunion n'est pas égale à E.
 - 2-a) Montrer le résultat pour k = 2.

On se donne maintenant k+1 sous-espaces vectoriels stricts $F_1, F_2, \ldots, F_{k+1}$, on note A_k la réunion des k sous-espaces vectoriels F_1, F_2, \ldots, F_k et on suppose qu'il existe $x \in F_{k+1} \setminus A_k$ et $y \in A_k \setminus F_{k+1}$. On note enfin $f : \mathbb{R} \to E$ l'application : $\alpha \mapsto \alpha x + y$.

- 2-b) Montrer que $f(\mathbb{R}) \cap F_{k+1} = \emptyset$.
- 2-c) Montrer que pour tout $i \in \{1, ..., k\}$, $f(\mathbb{R}) \cap F_i$ contient au plus un élément.
- 2-d) Conclure.