Problème

Notations

 $\mathbb N$ désigne l'ensemble des entiers naturels et $\mathbb R$ l'ensemble des nombres réels.

Objectif du problème

Soit a un nombre réel. On se propose d'étudier les suites réelles $u=(u_n)_{n\in\mathbb{N}}$ vérifiant la relation

$$\forall n \in \mathbb{N}, \quad u_{n+3} = (a+3)u_{n+2} - (3a+2)u_{n+1} + 2au_n. \tag{1}$$

On note E_a l'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ vérifiant (1).

Pour toute suite $u \in E_a$ et tout entier naturel n, on note $U_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$.

Partie A: Cas des suites constantes

Démontrer que, pour tout nombre réel a, les suites constantes appartiennent à E_a .

Partie B : le cas a = 0

Dans cette partie, on étudie le cas où a=0. On cherche l'ensemble E_0 des suites $u=(u_n)_{n\in\mathbb{N}}$ vérifiant :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 3u_{n+2} - 2u_{n+1}. \tag{2}$$

III. Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite appartenant à E_0 . On considère la suite $e = (e_n)_{n \in \mathbb{N}}$ définie par

$$e_0 = 1$$
 et $\forall n \ge 1, e_n = 0.$

- **1.** Vérifier que $e \in E_0$.
- 2. Soit λ un nombre réel. Pour tout entier naturel n, on pose $v_n=u_n-\lambda e_n$. Démontrer qu'il existe un réel λ tel que $v_2=3v_1-2v_0$ et démontrer que pour cette valeur de λ on a

$$\forall n \in \mathbb{N}, \quad v_{n+2} = 3v_{n+1} - 2v_n. \tag{3}$$

3. Démontrer qu'il existe deux nombres réels α et β tels que

$$v_0 = \alpha + \beta, \qquad v_1 = \alpha + 2\beta.$$

- **4.** Démontrer que pour tout entier naturel $n, v_n = \alpha + \beta 2^n$.
- **5.** Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est combinaison linéaire des suites $(e_n)_{n\in\mathbb{N}}$, $(2^n)_{n\in\mathbb{N}}$ et $(1)_{n\in\mathbb{N}}$, où $(1)_{n\in\mathbb{N}}$ désigne la suite constante de valeur 1.
- IV. Réciproquement, démontrer que toute suite de la forme mentionnée à la question III. 5. appartient à E_0 .
- V. 1. Déterminer l'ensemble E_0 .
 - 2. Comment s'appelle le raisonnement mobilisé dans les questions III. et IV. qui a permis de déterminer l'ensemble E_0 ?

Partie C: le cas a=3

On étudie à présent le cas où a=3. On cherche l'ensemble E_3 des suites $u=(u_n)_{n\in\mathbb{N}}$ vérifiant :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 6u_{n+2} - 11u_{n+1} + 6u_n. \tag{4}$$

Pour cela, on va utiliser la matrice

$$A = \begin{pmatrix} 6 & -11 & 6 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- **VI.** Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite de E_3 .
 - 1. Pour tout entier naturel n, trouver une relation entre U_{n+1} , A et U_n .
 - **2.** En déduire que, pour tout entier naturel n, $U_n = A^n U_0$.
 - 3. On considère la matrice

$$P = \begin{pmatrix} 1 & 4 & 9 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}.$$

Démontrer que P est inversible puis que $P^{-1}AP$ est une matrice diagonale D, que l'on déterminera.

- 4. Démontrer que, pour tout entier naturel n, $A^n = PD^nP^{-1}$.
- **5.** En déduire qu'il existe trois nombres réels x, y, z tels que, pour tout entier naturel n,

$$u_n = x + y \times 2^n + z \times 3^n$$

- **6.** Démontrer que x, y, z s'expriment chacun linéairement en fonction de u_0, u_1, u_2 .
- VII. Démontrer que toute combinaison linéaire des suites $(1)_{n\in\mathbb{N}}$, $(2^n)_{n\in\mathbb{N}}$, $(3^n)_{n\in\mathbb{N}}$ appartient à E_3 .
- **VIII.** Déterminer l'ensemble E_3 .
 - IX. Soit $u = (u_n)_{n \in \mathbb{N}}$ la suite de E_3 telle que $U_0 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Déterminer u_n pour tout entier naturel n.
 - **X.** Déterminer la limite de cette suite en $+\infty$.

Partie D: le cas général

Cette partie a pour objectif d'interpréter avec un recul de niveau première année les résultats des parties précédentes.

Soit a un nombre réel. On considère l'application θ définie par :

$$\theta: \left\{ \begin{array}{ccc} E_a & \longrightarrow & \mathbb{R}^3 \\ u = (u_n)_{n \in \mathbb{N}} & \longmapsto & U_0 = \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix} \right.$$

- XIII. 1. Rappeler sans démonstration quelle est la structure algébrique de l'ensemble des suites réelles.
 - 2. Démontrer que E_a est un sous-espace vectoriel de l'ensemble des suites réelles.
- **XIV.** 1. Démontrer que θ est une application linéaire.
 - 2. On admet que θ est une application bijective. En déduire la dimension de l'espace-vectoriel E_a .
- **XV.** En prenant appui sur les parties précédentes, déterminer une base de E_0 et une base de E_3 .

Et voilà, vous pouvez passer le CAPES de Mathématiques

Bonnes vacances ;-)