Lycée du Parc 2014-2015

Hypokhâgne B/L - Concours Blanc

Épreuve de mathématiques

Jeudi 21 Mai 2015 - 08h-12h

L'épreuve comporte trois exercices indépendants qui peuvent être abordés dans un ordre au choix du candidat. Le sujet est rédigé sur 4 pages dont celle-ci. L'usage de calculatrice ou de tout moyen de communication est interdit.

Exercice 1

Soit la matrice

$$A = \left(\begin{array}{ccc} 2 & -1 & 1\\ 1 & 0 & -1\\ 2 & -4 & -1 \end{array}\right)$$

et P le polynôme défini par :

$$P(X) = X^3 - X^2 - 7X + 11.$$

On note par convention P(A) la matrice $P(A) = A^3 - A^2 - 7A + 11 I_3$, où I_3 désigne la matrice identité de taille 3×3 .

- 1. Calculer A^2 et A^3 , puis vérifier que P(A) est la matrice nulle.
- 2. Montrer que A est inversible et exprimer A^{-1} en fonction de A et A^2 .
- 3. Soit $\lambda \in \mathbb{R}$ une valeur propre de A et V un vecteur propre associé. Calculer P(A)V de deux manières pour en déduire que $P(\lambda) = 0$.

Le but des questions 4 à 6 est de montrer que, réciproquement, toutes les racines de P sont des valeurs propres de A. Pour $\lambda \in \mathbb{R}$ fixé, on s'intéresse au système linéaire :

$$(L): \begin{cases} (2-\lambda)x - y + z &= 0\\ x - \lambda y - z &= 0\\ 2x - 4y - (1+\lambda)z &= 0 \end{cases}, \quad \text{c'est-à-dire} \quad (A - \lambda I_3) \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}.$$

- 4. Résoudre (L) lorsque $\lambda = 2$.
- 5. En supposant que $\lambda \neq 2$, montrer à l'aide de l'algorithme du pivot de Gauss que (L) est équivalent au système

$$\begin{cases} 2x & -4y - (1+\lambda)z = 0\\ (2-\lambda)y & +\frac{\lambda-1}{2}z = 0\\ \frac{cP(\lambda)}{2-\lambda}z = 0 \end{cases}$$

où $c \in \mathbb{R}$ est une constante à déterminer.

- 6. Montrer que si λ est racine de P, alors (L) admet des solutions non nulles. En conclure que l'ensemble des valeurs propres de A est l'ensemble des racines de P.
- 7. Déterminer le cardinal de l'ensemble des racines de ${\cal P}$:
 - (i) dans \mathbb{R} ,
 - (ii) dans \mathbb{C} .
- 8. A est-elle diagonalisable dans \mathbb{R} ? dans \mathbb{C} ?

Exercice 2

Soit f une fonction définie et dérivable sur \mathbb{R} , à valeurs réelles, vérifiant f(0) = 0 et la relation suivante :

$$\forall x \in \mathbb{R}, \quad f'(x) = e^{-xf(x)}$$
 (*)

où f' désigne la fonction dérivée de la fonction f.

- 1. Pour tout x réel, on pose : g(x) = f(x) + f(-x) et $h(x) = (g(x))^2$.
 - (a) On note g' la fonction dérivée de g. Montrer que pour tout x réel, g'(x) est du même signe que -xg(x).
 - (b) Étudier les variations de la fonction h.
 - (c) En déduire que f est une fonction impaire.
- 2. (a) Préciser les variations de la fonction f sur \mathbb{R} .
 - (b) On note a = f(1). Justifier que pour tout réel $x \ge 1$, on $a : f(x) \ge a > 0$.
 - (c) En déduire que l'intégrale $\int_0^{+\infty} e^{-xf(x)} dx$ est convergente.
 - (d) À l'aide de la relation (*), en déduire que f possède une limite finie en $+\infty$. On note alors pour la suite de l'exercice :

$$\lambda = \lim_{x \to +\infty} f(x).$$

- 3. (a) Établir pour tout réel $x \ge 0$, l'inégalité suivante : $\int_0^x e^{-tf(t)} dt \ge \int_0^x e^{-\lambda t} dt$.
 - (b) En déduire que pour tout réel $x \ge 0$, on a : $f(x) \ge \frac{1}{\lambda}(1 e^{-\lambda x})$.
 - (c) Montrer que $\lambda \geqslant 1$.
- 4. (a) Soit a un réel strictement positif. Établir pour tout réel $x \in [a, +\infty[$, l'inégalité suivante :

$$f(x) - f(a) \leqslant \int_{a}^{x} e^{-tf(a)} dt.$$

- (b) En déduire que pour tout $x \in [a, +\infty[$, on $a : f(x) \le f(a) + \frac{e^{-af(a)}}{f(a)}$.
- (c) On suppose que $\lambda > 1$. Établir l'existence d'un unique réel $\alpha > 0$ tel que $f(\alpha) = 1$.
- (d) En déduire que l'on a : $\lambda \leq 2$.

Exercice 3

Pour tout réel $r \geqslant 1$, soit f_r la fonction définie sur [0,1[par

$$f_r(x) = \frac{\exp(-rx)}{\sqrt{1-x}},$$

et l'on pose

$$I(r) = \int_0^1 f_r(x) dx.$$

- 1. Dresser le tableau de variations de la fonction f_r . Représenter sommairement son graphe pour r=8.
- 2. Montrer que I(r) est une intégrale convergente pour tout réel $r \ge 1$.

On écrit dans la suite $I(r) = I_1(r) + I_2(r) + I_3(r)$, avec

$$I_1(r) = \int_0^{r^{-2/3}} \exp(-rx) dx,$$

$$I_2(r) = \int_0^{r^{-2/3}} \left(\frac{1}{\sqrt{1-x}} - 1\right) \exp(-rx) dx,$$

$$I_3(r) = \int_{r^{-2/3}}^1 \frac{\exp(-rx)}{\sqrt{1-x}} dx.$$

3. Montrer que quand r tend vers l'infini, on a :

$$I_1(r) = \frac{1}{r} (1 + o(1)).$$

4. Montrer que pour tout réel y strictement compris entre 0 et 1, on peut écrire

$$1 \leqslant \frac{1}{\sqrt{1-y}} \leqslant 1 + \frac{y}{2(1-y)^{3/2}}.$$

5. Montrer que pour tout $r \ge 1$,

$$0 \leqslant I_2(r) \leqslant c_2 \left(1 - r^{-2/3}\right)^{-3/2} \frac{1}{r^{4/3}},$$

où c_2 est une constante dont on précisera la valeur.

6. Montrer que pour tout $r \ge 1$, on a

$$0 \leqslant I_3(r) \leqslant c_3 \exp\left(-r^{1/3}\right),\,$$

où c_3 est une constante dont on précisera la valeur.

7. En déduire que I(r) est équivalent à 1/r quand r tend vers l'infini.