Le devoir comporte six exercices indépendants, qui peuvent être abordés dans un ordre laissé au choix du candidat.

Le sujet est rédigé sur deux pages. L'usage de toute calculatrice ou de tout moyen de communication est interdit.

Bien traiter quelques questions rapporte des points, les bâcler toutes n'en rapporte aucun. Il sera tenu compte de la rigueur, du soin et de la rédaction dans la notation. Seuls les résultats soulignés ou encadrés seront considérés comme des résultats.

Exercice 1

On considère la suite définie par :

$$\begin{cases} u_0 = 1, \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + n - 1. \end{cases}$$

- 1. (a) Calculer u_1 , u_2 et u_3 .
 - (b) Montrer par récurrence que : $\forall n \in \mathbb{N}, u_n \geqslant 1$.
 - (c) Sans récurrence, en déduire que : $\forall n \in \mathbb{N}, u_n \geqslant n$.
- 2. On pose pour tout $n \in \mathbb{N}$, $v_n = u_n + n$.
 - (a) Exprimer v_{n+1} en fonction de u_n et n.
 - (b) En déduire l'expression de v_n en fonction de n.
 - (c) Déterminer l'expression de u_n en fonction de n.
- 3. (a) En reprenant la définition de (u_n) , montrer que :

$$\forall n \in \mathbb{N}, \ \frac{u_{n+1} - 1}{2^n} = \frac{u_n - 1}{2^{n-1}} + \frac{n}{2^n}.$$

(b) En déduire que :

$$\forall n \in \mathbb{N}^*, \ \sum_{k=0}^{n-1} \frac{k}{2^k} = \frac{u_n - 1}{2^{n-1}}.$$

(c) Déterminer enfin l'expression de $\sum_{k=0}^{n-1} \frac{k}{2^k}$ en fonction de n.

Exercice 2

Toutes les questions et sous-questions sont indépendantes.

- 1. Simplifier les expressions suivantes :
 - (a) $A_n = \frac{n!}{(n+1)!} \frac{(n-1)!}{n!}$.
 - (b) $B_n = (n+2)! 2(n!).$
 - (c) $C_n = \prod_{k=2}^n \frac{k}{k-1}$.
 - (d) $D_n = \prod_{k=0}^n 2^k$.
- 2. Montrer que:

$$\sum_{k=1}^{n} k \times k! = (n+1)! - 1.$$

Exercice 3

On considère la suite (u_n) par : $\begin{cases} u_0 = 1, \\ u_1 = 2, \\ \forall n \in \mathbb{N}, \ u_{n+2} = \frac{3u_{n+1}u_n}{2u_n + u_{n+1}}. \end{cases}$

- 1. Déterminer les valeurs de u_2 et u_3 .
- 2. On définit la suite (v_n) par : $\forall n \in \mathbb{N}, \ v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$.
 - (a) Montrer que la suite (v_n) est géométrique de raison -1/3.
 - (b) En déduire l'expression de v_n en fonction de $n \in \mathbb{N}$.
- 3. Pour $n \in \mathbb{N}^*$, calculer de deux manières différentes la somme $\sum_{k=0}^{n-1} v_k$ et en déduire que :

$$\frac{1}{u_n} = \frac{5}{8} + \frac{3}{8} \left(-\frac{1}{3}\right)^n$$
, puis que $u_n = \frac{8 \times (-3)^n}{3 + 5 \times (-3)^n}$.

Exercice 4

On considère la suite (u_n) définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n^2 + \frac{1}{2^n}}.$

- 1. Montrer par récurrence que : $\forall n \in \mathbb{N}, u_n \geqslant 1$.
- 2. Montrer que $\forall n \in \mathbb{N}, \ u_{n+1} \geqslant u_n$.
- 3. (a) Vérifier que pour $n \in \mathbb{N}$, on a :

$$u_{n+1} - u_n = \frac{1}{2^n(u_{n+1} + u_n)}.$$

- (b) En déduire que : $\forall n \in \mathbb{N}, \ u_{n+1} u_n \leqslant \frac{1}{2^{n+1}}$.
- (c) Calculer pour $n \ge 1$, $\sum_{k=0}^{n-1} (u_{k+1} u_k)$ et en déduire que :

$$\forall n \in \mathbb{N}^*, \ u_n \leqslant 1 + \sum_{k=1}^n \frac{1}{2^k}.$$

(d) Rappeler la valeur de $\sum_{k=1}^n \frac{1}{2^k}.$ En déduire que :

$$\forall n \in \mathbb{N}^*, \ u_n \leqslant 2.$$

4. On définit une suite (v_n) par :

$$\forall n \in \mathbb{N}, \ v_n = u_n^2.$$

- (a) Pour $n \in \mathbb{N}$, exprimer v_{n+1} en fonction de v_n et de n.
- (b) Calculer la somme $\sum_{k=0}^{n-1} (v_{k+1} v_k)$ de deux manières différentes. En déduire l'expression de v_n en fonction de $n \in \mathbb{N}$.
- (c) Déterminer l'expression de u_n en fonction de $n \in \mathbb{N}$.

Exercice 5

Montrer par récurrence que :

$$\forall n \ge 1, \ \prod_{k=1}^{n} (4k - 2) = \prod_{k=1}^{n} (n+k).$$

Exercice 6

Soit (u_n) la suite définie par

$$u_0 = 1$$
 et $\forall n \ge 0, \ u_{n+1} = \sqrt{\frac{\sum_{k=0}^{n} u_k^2}{2n+2}}.$

- 1. Montrer que pour tout n dans \mathbb{N} , $0 \leq u_n \leq 1$.
- 2. Montrer que:

$$\forall n \in \mathbb{N}, \ u_{n+1}^2 = \frac{2n+1}{2n+2}u_n^2.$$

- 3. En déduire que pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$.
- 4. Montrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \ u_n^2 = \prod_{k=1}^n \left(1 - \frac{1}{2k}\right).$$