Exercice 1

Soit $A=\begin{pmatrix}7&3&-9\\-2&-1&2\\2&-1&-4\end{pmatrix}$ et soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A

- 1. Déterminer les valeurs propres de f, i.e. tous les réels λ tels que $(f \lambda Id)$ soit non bijective. (Réponse: -2, 1 et 3)
- 2. Pour chaque valeur propre trouvée, déterminer une base de $\operatorname{Ker}(f-\lambda Id).$
- 3. Déterminer une base $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$ de \mathbb{R}^3 dans laquelle la matrice de f est diagonale.
- 4. En déduire qu'il existe une matrice P inversible et une matrice diagonale D telle que $A = PDP^{-1}$. Calculer P^{-1} .
- 5. En déduire la valeur de A^n pour tout entier $n \in \mathbb{N}$.

Exercice 2

Soit E un \mathbb{K} -espace vectoriel de dimension n et soit f un endomorphisme de E vérifiant :

$$f^2 + 5f + 6Id_E = 0$$

- 1. Montrer que f est bijectif et déterminer f^{-1} en fonction de f et Id_E .
- 2. Montrer qu'on a :

$$E = \operatorname{Ker}(f + 2Id_E) \oplus \operatorname{Ker}(f + 3Id_E)$$

3. En déduire qu'il existe une base de E dans la quelle la matrice de f est diagonale.