Lycée du Parc 2011-2012

Hypokhâgne B/L - Concours Blanc

Épreuve de mathématiques

Samedi 5 Mai 2012 - 08h-12h

Si la vie est complexe, c'est parce qu'elle a une partie réelle et une partie imaginaire. Marius Sophus Lie.

Le devoir comporte six exercices qui peuvent être abordés <u>dans un ordre laissé au choix du candidat</u>. Le sujet est rédigé sur 4 pages.

L'usage de toute calculatrice ou de tout moyen de communication est interdit.

Exercice 1

On pose, pour tout $n \in \mathbb{N}^*$,

$$u_n = \int_0^1 \frac{dx}{1+x^n}$$

- 1. Calculer u_1 .
- 2. Montrer que la suite $(u_n)_{n\geqslant 1}$ est convergente vers un réel ℓ vérifiant $\ell\leqslant 1$.
- 3. Déterminer une relation entre u_n et $\int_0^1 \frac{x^n}{1+x^n} dx$ et montrer alors que pour tout $n \in \mathbb{N}^*$, on a :

$$0 \leqslant 1 - u_n \leqslant \frac{1}{n+1}.$$

Que peut-on en déduire?

4. En effectuant une intégration par parties, établir l'égalité :

$$\int_0^1 \frac{x^n}{1+x^n} dx = \frac{\ln(2)}{n} - \frac{1}{n} \int_0^1 \ln(1+x^n) dx$$

5. Montrer que pour tout u réel positif, $\ln(1+u) \leq u$. En déduire que :

$$\int_0^1 \ln(1+x^n) dx \leqslant \frac{1}{n+1}$$

6. Donner une valeur approchée de $1-u_{10}$, puis de u_{10} à 10^{-2} près.

Exercice 2

1. À l'aide d'un changement de variable $u=x^2$, calculer l'intégrale :

$$I = \int_0^{1/\sqrt{2}} \frac{x}{\sqrt{1 - x^4}} dx$$

2. À l'aide d'un changement de variable $x = \cos(t)$, calculer l'intégrale :

$$J = \int_0^{1/2} \sqrt{\frac{1-x}{1+x}} dx$$

Exercice 3

- 1. Soit T une matrice triangulaire. Rappeler à quelle condition la matrice T est inversible.
- 2. Soit a un réel quelconque. Déterminer les valeurs de a pour lesquelles la matrice $M = \begin{pmatrix} -a & -1 & -1 \\ -1 & -a & -1 \\ 1 & 1 & 2-a \end{pmatrix}$ n'est pas inversible.

Exercice 4

On définit les polynômes A, B et C par :

$$A = (X+3)(X+5), \quad B = 2(X+1)(X+5), \quad C = 3(X+1)(X+3)$$

- 1. Montrer que les trois polynômes A, B et C forment une base de l'espace vectoriel $\mathbb{R}_2[X]$.
- 2. On considère $E = \{ P \in \mathbb{R}_2[X] / P(-1) = 0 \}$. Montrer que E est un sous-espace vectoriel de $\mathbb{R}_2[X]$.
- 3. (a) Démontrer que $(X+1, X^2-1)$ est une famille libre d'éléments de E.
 - (b) En déduire une base et la dimension de E.
- 4. Démontrer que (B, C) est une base de E.
- 5. Soit F l'espace vectoriel engendré par le polynôme A. Démontrer que $F \cap E = \{0\}$. A-t-on $\mathbb{R}_2[X] = F \oplus E$?

Exercice 5

Soit f la fonction définie, lorsque cela a un sens, par la relation suivante :

$$f(x) = \int_{x}^{2x} \frac{dt}{t - \ln(t)}$$

- 1. Montrer que f(x) a un sens pour tout x strictement positif.
- 2. Montrer que la fonction f est dérivable sur \mathbb{R}^{+*} et calculer sa dérivée f'(x) pour x>0.
- 3. Étudier les variations de la fonction f.
- 4. (a) Calculer, pour x > 0, $\int_{x}^{2x} \frac{dt}{t}$.
 - (b) Montrer que

$$\lim_{t \to +\infty} t^{3/2} \left(\frac{1}{t - \ln(t)} - \frac{1}{t} \right) = 0$$

(c) Justifier qu'il existe un réel A tel que pour tout t>A, on ait :

$$t^{3/2}\left(\frac{1}{t-\ln(t)}-\frac{1}{t}\right)\leqslant 1$$

(d) En déduire que

$$\lim_{x \to +\infty} \int_{x}^{2x} \left(\frac{1}{t - \ln(t)} - \frac{1}{t} \right) dt = 0$$

- (e) Montrer que f admet une limite quand x tend vers $+\infty$, et que cette limite est $\ln(2)$.
- 5. Montrer que f admet pour limite 0 quand x tend vers 0^+ , et en déduire que f est prolongeable en une fonction continue sur \mathbb{R}^+ .
- 6. Déterminer la limite de f'(x) lorsque $x \to 0^+$. La fonction f (prolongée) est-elle dérivable en 0?
- 7. Donner l'allure de la représentation graphique de f, le plan étant rapporté à un repère orthonormé.

Exercice 6

Soit E un \mathbb{K} -espace vectoriel <u>de dimension 3</u>, dont on notera le vecteur nul $\overrightarrow{0}$. Soit u un endomorphisme de E qui vérifie :

$$\forall \overrightarrow{x} \in E, \ u^3(\overrightarrow{x}) = \overrightarrow{0}$$

où u^3 désigne la composée $u \circ u \circ u$.

- 1. Peut-on avoir $Ker(u) = \{\overrightarrow{0}\}$? Déterminer $Ker(u^3)$.
- 2. Montrer que $\operatorname{Ker}(u) \subset \operatorname{Ker}(u^2)$ et $\operatorname{Ker}(u^2) \subset \operatorname{Ker}(u^3)$.
- 3. Montrer que si on a $Ker(u) = Ker(u^2)$, alors $Ker(u^2) = Ker(u^3)$.
- 4. On suppose dans cette question que $\dim(\operatorname{Ker}(u)) = 1$. On souhaite prouver que $\dim(\operatorname{Ker}(u^2)) = 2$.
 - (a) Montrer que si $\dim(\operatorname{Ker}(u^2))=1$, alors on a $E=\operatorname{Ker}(u)\oplus\operatorname{Im}(u)$. En déduire que ce cas est exclu.
 - (b) Montrer que si $\dim(\operatorname{Ker}(u^2)) = 3$, alors $\operatorname{Im}(u) \subset \operatorname{Ker}(u)$. En déduire que ce cas est exclu.
 - (c) Conclure.
- 5. Montrer que si $\dim(\operatorname{Ker}(u)) = 2$, alors u^2 est l'endomorphisme nul.
- 6. On suppose dans cette question que u^2 n'est pas l'endomorphisme nul.
 - (a) Calculer $\dim(\operatorname{Im}(u))$ et $\dim(\operatorname{Im}(u^2))$.
 - (b) Soit $\overrightarrow{x_0} \in E$ tel que $u^2(\overrightarrow{x_0}) \neq \overrightarrow{0}$. Montrer que la famille $\mathcal{B} = (\overrightarrow{x_0}, u(\overrightarrow{x_0}), u^2(\overrightarrow{x_0}))$ est une base de E.