Exercice 1

1. Soit le polynôme P_n défini par

$$P_n(X) = X^n + X^{n-1} + \dots + X^2 + X - 1$$

Montrer pour tout $n \ge 2$, que P_n possède une racine et une seule a_n dans l'intervalle]0,1[.

- 2. Calculer a_2 .
- 3. Montrer que $P_n(a_{n+1}) < 0$, puis en déduire que la suite $(a_n)_{n \ge 2}$ est décroissante et convergente.
- 4. Déterminer la limite de la suite (a_n) .

Exercice 2

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{2}e^{x-1}$.

1. Démontrer que l'équation f(x) = x admet deux solutions dans \mathbb{R} dont une et une seule qui est élément de l'intervalle [0,1].

On désigne par x_0 , la solution de l'intervalle [0,1].

- 2. Soit la suite (u_n) définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - (a) Démontrer que $\forall n \in \mathbb{N}, u_n \in [0,1]$
 - (b) Déterminer la (les) limite(s) éventuelle(s) de la suite (u_n) .
 - (c) Montrer que $\forall n \in \mathbb{N}, |u_{n+1} x_0| \leqslant \frac{1}{2}|u_n x_0|$
 - (d) En déduire la convergence et la limite de la suite (u_n) .