Exercice

Le but de cet exercice est d'étudier une suite récurrente linéaire d'ordre 3 à l'aide de matrices. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} u_0 = 0, \ u_1 = 0, \ u_2 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+3} = -u_{n+2} + 5u_{n+1} - 3u_n \end{cases}$$

- 1. Soient $a, b \in \mathbb{R}$. On pose $J(a, b) = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$. On note $D = aI_3$ et R = J(a, b) D.
 - (a) Déterminer pour tout $k \in \mathbb{N}$, R^k et D^k .
 - (b) En déduire, pour tout $n \in \mathbb{N}$, $(J(a,b))^n$.
- 2. Pour $n \geqslant 3$, on pose $U_n = \begin{pmatrix} u_n \\ u_{n-1} \\ u_{n-2} \end{pmatrix}$.
 - (a) Montrer que pour tout $n \ge 3$, $U_{n+1} = AU_n$ où A est une matrice de $\mathcal{M}_3(\mathbb{R})$ à déterminer.
 - (b) Montrer par récurrence que $\forall n \geqslant 3, \ U_n = A^{n-2}U_2$.
- 3. (a) On pose $P = \begin{pmatrix} 1 & 3 & 9 \\ 1 & 2 & -3 \\ 1 & 1 & 1 \end{pmatrix}$. Montrer que P est inversible à l'aide du pivot de Gauss et déterminer la matrice P^{-1} .
 - (b) Montrer que $A = PJ(1, -3)P^{-1}$. En déduire que pour tout $n \in \mathbb{N}$, $A^n = P(J(1, 3))^n P^{-1}$.
 - (c) Déduire des questions précédentes u_n en fonction de n.