CHAPITRE 14

Applications linéaires

Dans tout le chapitre, E et F sont des \mathbb{K} -espaces vectoriels.

14.1 Définitions

Définition 1

Une application f de E dans F est appelée une **application linéaire** si :

$$\forall \overrightarrow{u}, \overrightarrow{v} \in E, \ \forall \lambda \in \mathbb{K}, \ f(\lambda \overrightarrow{u} + \overrightarrow{v}) = \lambda f(\overrightarrow{u}) + f(\overrightarrow{v})$$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

Exemples:

E1 – La fonction réelle $f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax \end{array}$ est-elle linéaire?

On a pour tout $x, y \in \mathbb{R}$ et tout $\lambda \in \mathbb{R}$,

$$f(\lambda x + y) = a(\lambda x + y) = \lambda ax + ay = \lambda f(x) + f(y)$$

La fonction f est donc linéaire.

 $\mathbf{E} \, \mathbf{2} - \, \mathbf{La} \, \, \text{fonction r\'eelle} \, \, f : \, \begin{array}{c} \mathbb{R} & \longrightarrow & \mathbb{R}^2 \\ x & \longmapsto & x^2 \end{array} \, \, \text{est-elle lin\'eaire} \, ?$

On a pour tout $x, y \in \mathbb{R}$ et tout $\lambda \in \mathbb{R}$,

$$f(\lambda x + y) = (\lambda x + y)^2 = \lambda^2 x^2 + y^2 + 2xy, \qquad \lambda f(x) + f(y) = \lambda x^2 + y^2$$

La fonction f n'est donc pas linéaire.

Remarque:

Les fonctions linéaires de $\mathbb R$ dans $\mathbb R$ sont uniquement les fonctions dont la courbe représentative est une droite passant par 0.

Exemples:

E1 - Soit
$$f: \frac{\mathbb{R}^3}{(x,y,z)} \xrightarrow{\longrightarrow} \mathbb{R}^2$$
. L'application f est-elle linéaire? Soit $\overrightarrow{u} = (x,y,z) \in \mathbb{R}^3$, soit $\overrightarrow{v} = (x',y',z') \in \mathbb{R}^3$, et soit $\lambda \in \mathbb{R}$.
$$f(\lambda \overrightarrow{u} + \overrightarrow{v}) = f(\lambda(x,y,z) + (x',y',z'))$$
$$= f(\lambda x + x', \lambda y + y', \lambda z + z')$$
$$= (2(\lambda x + x') - (\lambda y + y'); (\lambda x + x') + (\lambda y + y') + (\lambda z + z'))$$
$$= (\lambda(2x - y) + (2x' - y'); \lambda(x + y + z) + (x',y',z'))$$
$$= \lambda(2x - y; x + y + z) + (2x' - y', x' + y' + z')$$
$$= \lambda f(\overrightarrow{u}) + f(\overrightarrow{v})$$

- E2 L'application $\xrightarrow{E} \xrightarrow{\longrightarrow} \xrightarrow{F}$, appelée **application nulle de** F (qui envoie tout vecteur de E sur le vecteur nul) est une application linéaire.
- E3 L'application Id_E : $\stackrel{E}{\cancel{u}} \stackrel{\longrightarrow}{\longmapsto} \stackrel{E}{\cancel{u}}$, appelée l'**application identité de** E, est une application linéaire.

Définition 2

- Une application linéaire qui va de E dans E est appelée un **endomorphisme de** E. On note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E (au lieu de $\mathcal{L}(E, E)$).
- Une application linéaire qui va de E dans F, qui en plus est bijective, est appelé un isomorphisme
- Une application de E dans E qui est à la fois un endomorphisme et un isomorphisme (i.e. linéaire de E dans E et bijective) est appelée un **automorphisme** de E

Remarque:

Les applications linéaires ne sont pas forcément des fonctions, pour montrer le caractère bijectif, on ne peut pas regarder de "continuité + stricte monotonie" cela n'a pas de sens. On revient à la définition : injective et surjective.

Proposition 3

Soit $f \in \mathcal{L}(E, F)$. Alors:

- 1. On a toujours $f(\overrightarrow{0_E}) = \overrightarrow{0_F}$.
- 2. On $a f(\overrightarrow{u} + \overrightarrow{v}) = f(\overrightarrow{u}) + f(\overrightarrow{v}), f(\overrightarrow{u} \overrightarrow{v}) = f(\overrightarrow{u}) f(\overrightarrow{v})$
- 3. On a $f\left(\sum_{k=1}^{n} \lambda_k \overrightarrow{u_k}\right) = \sum_{k=1}^{n} \lambda_k f(\overrightarrow{u_k})$

Démonstration:

Par exemple,
$$f(\overrightarrow{0_E}) = f(-\overrightarrow{x} + x) = -f(\overrightarrow{x}) + f(\overrightarrow{x}) = \overrightarrow{0_F}$$
.

14.2 Noyau et image

14.2.1Noyau d'une application linéaire

Définition 4

Soit f une application linéaire de E dans F.

On appelle **noyau de** f, notée Ker(f), l'ensemble des antécédants de $\overrightarrow{0_F}$ dans E par f:

$$\operatorname{Ker}(f) = \{ \overrightarrow{u} \in E / f(\overrightarrow{u}) = \overrightarrow{0_F} \}$$

Remarques:

R1 – Ker(f) est toujours inclus dans l'ensemble de départ de fR2 – On a donc, pour tout $\overrightarrow{u} \in \text{Ker}(f), f(\overrightarrow{u}) = \overrightarrow{0_F}$.

Proposition 5

Soit $f \in \mathcal{L}(E, F)$. Alors Ker(f) est un sous-espace vectoriel de E.

Démonstration:

- $Ker(f) \subset E$ par définition.
- On sait déjà que $f(\overrightarrow{0_E}) = \overrightarrow{0_F}$, donc $\overrightarrow{0_E} \in \operatorname{Ker}(f) : \operatorname{Ker}(f) \neq \emptyset$ Soient $\overrightarrow{u}, \overrightarrow{v} \in \operatorname{Ker}(f)$ et soit $\lambda \in \mathbb{K}$. A-t-on encore $\lambda \overrightarrow{u} + \overrightarrow{v} \in \operatorname{Ker}(f)$?

$$f(\lambda \overrightarrow{u} + \overrightarrow{v}) = \lambda f(\overrightarrow{u}) + f(\overrightarrow{v}) = \lambda \overrightarrow{0_F} + \overrightarrow{0_F} = \overrightarrow{0_F}$$

donc Ker(f) est bien stable par combinaison linéaire.

Proposition 6

Soit f une application linéaire de E dans F. Alors :

$$f \ injective \iff Ker(f) = \{\overrightarrow{0_E}\}$$

Démonstration:

 \implies Supposons f injective : $\forall \overrightarrow{x}, \overrightarrow{x'} \in E$, si on a $f(\overrightarrow{x}) = f(\overrightarrow{x'})$, alors on a nécessairement $\overrightarrow{x} = \overrightarrow{x'}$. $\underline{\text{Montrons que Ker}(f) = \{\overrightarrow{0_E}\}}.$

 $\overline{\text{L'inclusion }\{\overrightarrow{0_E}\}\subset \text{Ker}(f) \text{ est toujours vraie (puisque Ker}(f) \text{ est un sous-espace vectoriel de }E)}$

A-t-on $\operatorname{Ker}(f) \subset \{\overrightarrow{0_E}\}\ ?$

Soit $\overrightarrow{u} \in \text{Ker}(f)$, autrement dit $f(\overrightarrow{u}) = \overrightarrow{0_F} = f(\overrightarrow{0_E})$, donc puisque f est injective, on a $\overrightarrow{u} = \overrightarrow{0_E}$, donc $\operatorname{Ker}(f) \subset \{\overrightarrow{0_E}\}.$

 \subseteq Supposons que $Ker(f) = {\overrightarrow{0_E}}$.

Montrons que f est injective.

Soient \overrightarrow{x} , $\overrightarrow{x'}$ deux vecteurs de E tels que $f(\overrightarrow{x}) = f(\overrightarrow{x'})$. On a alors

$$f(\overrightarrow{x'}) - f(\overrightarrow{x'}) = \overrightarrow{0_F} \Longrightarrow f(\overrightarrow{x'} - \overrightarrow{x'}) = \overrightarrow{0_F} \Longrightarrow \overrightarrow{x'} - \overrightarrow{x'} \in \operatorname{Ker}(f) \Longrightarrow \overrightarrow{x'} - \overrightarrow{x'} = \overrightarrow{0_E} \Longrightarrow \overrightarrow{x'} = \overrightarrow{x'}$$

14.2.2Image d'une application linéaire

Définition 7

Soit f une application linéaire de E dans F.

On appelle Image de f, notée Im(f), l'ensemble des images de tous les vecteurs de E dans l'ensemble F:

$$\operatorname{Im}(f) = \{ \overrightarrow{y} \in F \ / \ \exists \overrightarrow{x} \in E \ / \ \overrightarrow{y} = f(\overrightarrow{x}) \}$$

Remarques:

R1 – On a donc $\operatorname{Im}(f) = f(E)$: c'est l'image directe de E par l'application fR2 – Pour tout vecteur $\overrightarrow{v} \in \operatorname{Im}(f)$, on peut dire que : $\exists \overrightarrow{u} \in E \ / \ \overrightarrow{v} = f(\overrightarrow{u})$ R3 – $\operatorname{Im}(f)$ est donc finalement l'ensemble des vecteurs qui peuvent s'écrire "f(quelque chose)".

Proposition 8

Soit $f \in \mathcal{L}(E, F)$. Alors Im(f) est un sous-espace vectoriel de F.

Démonstration:

- $\operatorname{Im}(f) \subset F$ par définition.
- On sait déjà que $f(\overrightarrow{0_E}) = \overrightarrow{0_F}$, donc $\overrightarrow{0_F}$ est l'image d'un vecteur de E par l'application f, donc $\overrightarrow{0_F} \in \text{Im}(f)$: $\operatorname{Im}(f) \neq \emptyset$
- Soient \overrightarrow{u} , $\overrightarrow{v} \in \text{Im}(f)$ et soit $\lambda \in \mathbb{K}$. A-t-on encore $\lambda \overrightarrow{u} + \overrightarrow{v} \in \text{Im}(f)$? On sait que $\overrightarrow{u} \in \text{Im}(f) : \exists \overrightarrow{x} \in E / \overrightarrow{u} = f(\overrightarrow{x}).$ On sait que $\overrightarrow{v} \in \text{Im}(f) : \exists \overrightarrow{y} \in E / \overrightarrow{v} = f(\overrightarrow{y})$.

 $\lambda \overrightarrow{u} + \overrightarrow{v} = \lambda f(\overrightarrow{x}) + f(\overrightarrow{y}) = f(\lambda \overrightarrow{x} + \overrightarrow{y}) \in \text{Im}(f)$

donc Im(f) est bien stable par combinaison linéaire.

Proposition 9

Soit f une application linéaire de E dans F. Alors :

$$f \ surjective \iff Im(f) = F$$

Proposition 10

Soit f une application linéaire de E dans F. Alors :

$$si\ E = Vect(\overrightarrow{u_1}, \dots, \overrightarrow{u_n}), \qquad alors\ Im(f) = Vect(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n}))$$

Démonstration:

Supposons que $E = Vect(\overrightarrow{u_1}, \dots, \overrightarrow{u_n})$. Montrons que $\operatorname{Im}(f) = Vect(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n})).$

L'inclusion $Vect\left(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n})\right) \subset \operatorname{Im}(f)$ est évidente, puisque chacun des $f(\overrightarrow{u_i})$ est dans $\operatorname{Im}(f)$, et que Im(f) est stable par combinaison linéaire, donc le Vect est bien encore inclus dans Im(f).

Réciproquement, si on prend $\overrightarrow{y} \in \text{Im}(f)$, alors il existe $\overrightarrow{x} \in E$ tel que $\overrightarrow{y} = f(\overrightarrow{x})$. Or, $E = Vect(\overrightarrow{u_1}, \dots, \overrightarrow{u_n})$, donc \overrightarrow{x} peut s'écrire $\overrightarrow{x} = \sum_{k=1}^n \lambda_k \overrightarrow{u_k}$ avec $\lambda_1, \dots, \lambda_n \in \mathbb{K}$. Ainsi :

$$\overrightarrow{y} = f\left(\sum_{k=1}^{n} \lambda_k \overrightarrow{u_k}\right) = \sum_{k=1}^{n} \lambda_k f(\overrightarrow{u_k}) \in Vect\left(f(\overrightarrow{u_1}), \dots, f(\overrightarrow{u_n})\right)$$

On a donc bien montré que $\operatorname{Im}(f) \subset \operatorname{Vect}(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n}))$, d'où l'égalité entre les deux ensembles.

14.2.3 Théorème du rang

Définition 11

Soit f une application linéaire de E dans F. On appelle **rang de** f la dimension de Im(f), lorsque cette dimension existe bien :

$$rg(f) = dim (Im(f))$$

Théorème 12

Théorème du rang

Soit f une application linéaire de E dans F.

On suppose que E est un espace vectoriel de dimension finie. Alors, on a :

$$\dim(Ker(f)) + \dim(Im(f)) = \dim(E)$$

autrement dit:

$$\dim(Ker(f)) + rg(f) = \dim(E)$$

14.3 Isomorphismes en dimension finie

Proposition 13

Soient E et F deux espaces vectoriels <u>de même dimension</u>. Soit $f \in \mathcal{L}(E, F)$. Alors:

f injective \iff f surjective \iff f bijective

Démonstration:

$$f$$
 injective $\iff \operatorname{Ker}(f) = \{\overrightarrow{O_E}\}\$
 $\iff \dim(\operatorname{Ker}(f)) = 0$
 $\iff \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = \dim(\operatorname{Im}(f))$
 $\iff \dim(\operatorname{Im}(f)) = \dim(E) \text{ (par théorème du rang)}$
 $\iff \dim(\operatorname{Im}(f)) = \dim(F)$
 $\iff \operatorname{Im}(f) = F \text{ car } \operatorname{Im}(f) \subset F \text{ et égalité des dimensions}$
 $\iff f \text{ surjective}$

Remarque:

On utilise souvent ce résultat pour les endomorphismes en dimension finie :

Soit E un espace vectoriel de dimension finie.

Si $f \in \mathcal{L}(E)$ vérifie $\mathrm{Ker}(f) = \{\overrightarrow{0_E}\}$, alors f est injective, et donc également surjective, et donc bijective et c'est un isomorphisme de E dans E.

Proposition 14

Soit $(\overrightarrow{u_1}, \overrightarrow{u_2}, \dots, \overrightarrow{u_n})$ une famille libre de E.

Si f est une application linéaire <u>injective</u> de E dans F, alors $(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n}))$ est une famille libre de F.

Démonstration:

Supposons que $(\overrightarrow{u_1}, \overrightarrow{u_2}, \dots, \overrightarrow{u_n})$ soit une famille libre de E.

Prenons $f \in \mathcal{L}(E, F)$ une application injective.

Montrons que $(f(\overrightarrow{u_1}), f(\overrightarrow{u_2}), \dots, f(\overrightarrow{u_n}))$ est une famille libre de F.

Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que $\sum_{k=1}^n \lambda_k f(\overrightarrow{u_k}) = \overrightarrow{0_F}$. Alors :

$$\sum_{k=1}^{n} \lambda_k f(\overrightarrow{u_k}) = \overrightarrow{O_F} \Longrightarrow f\left(\sum_{k=1}^{n} \lambda_k \overrightarrow{u_k}\right) = \overrightarrow{O_F} \text{ (car } f \text{ linéaire)}$$

$$\Longrightarrow \sum_{k=1}^{n} \lambda_k \overrightarrow{u_k} \in \text{Ker}(f)$$

$$\Longrightarrow \sum_{k=1}^{n} \lambda_k \overrightarrow{u_k} = \overrightarrow{O_E} \text{ (car } f \text{ injective)}$$

$$\Longrightarrow \forall k \in [1, n], \lambda_k = 0 \text{ (car } (\overrightarrow{u_1}, \dots, \overrightarrow{u_n}) \text{ libre)}$$

Proposition 15

Soient E et F deux espaces vectoriels de dimension finie et soit $f \in \mathcal{L}(E, F)$.

- $1. \ Si \ f \ est \ un \ isomorphisme \ de \ E \ dans \ F, \ alors \ l'image \ de \ toute \ base \ de \ E \ par \ f \ est \ une \ base \ de \ F.$
- $2. \ \ Si\ l'image\ d'une\ base\ de\ E\ par\ f\ est\ une\ base\ de\ F,\ alors\ f\ est\ un\ isomorphisme\ de\ E\ dans\ F.$

Démonstration:

- 1. Supposons f est un isomorphisme de E dans F et prenons une base \mathcal{B} de E. Puisque f est injective et que \mathcal{B} est libre, on sait que $f(\mathcal{B})$ est une famille libre de F. De plus, \mathcal{B} est génératrice de E, donc $f(\mathcal{B})$ est génératrice de $\operatorname{Im}(f)$, donc de F puisque f surjective. Ainsi, $f(\mathcal{B})$ est une base de F.
- 2. Supposons que \mathcal{B} soit une base de E telle que $f(\mathcal{B})$ soit aussi une base de F. Puisque $Card(\mathcal{B}) = Card(f(\mathcal{B}))$, les espaces E et F sont de même dimension. De plus, puisque $f(\mathcal{B}) = \operatorname{Im}(f) = F$, on a f surjective, et donc f est également injective. Donc f est un isomorphisme.