Continuité et dérivation

7.1 Continuité d'une fonction

7.1.1 Définitions

Définition 1

Soit $f: D_f \to \mathbb{R}$ et soit $a \in D_f$. On suppose la fonction f définie au voisinage de a. On dit alors que f est continue en a si $\left[\lim_{x\to a} f(x) = f(a)\right]$.

Définition 2

Soit $f: I \to \mathbb{R}$ avec I un intervalle de \mathbb{R} .

On dit que f est continue sur I si f est continue en tout point de I.

On note $\mathcal{C}(I,\mathbb{R})$ (ou $\mathcal{C}^0(I,\mathbb{R})$) l'ensemble des fonctions continues sur I.

Proposition 3

Les fonctions usuelles (sauf la partie entière) sont toutes continues en tout point de leur ensemble de définition. C'est en particulier le cas pour :

- les fonctions polynomiales
- les fonctions rationnelles (quotient de deux fonctions polynomiales)
- la valeur absolue
- la racine carrée
- la fonction logarithme népérien
- les fonctions exponentielles
- les fonctions puissances

Remarques:

- $\mathbf{R1}$ Si f et g sont deux fonctions continues sur I,
 - la somme f + g est encore une fonction continue sur I
 - le produit λf ($\lambda \in \mathbb{R}$) est encore une fonction continue sur I
 - le produit $f \times g$ est encore une fonction continue sur I
- **R2** Si f et g sont deux fonctions continues sur I et g is g ne s'annule jamais sur g, alors la fonction g est encore une fonction continue sur g.
- **R3** Si f est continue sur I et si g est continue sur J avec $f(I) \subset J$, alors la composée $g \circ f$ est continue sur I.

7.1.2 Théorème des Valeurs Intermédiaires

Théorème 4

L'image d'un intervalle par une fonction continue est un intervalle. Autrement dit, si f est continue sur un intervalle I, alors f(I) est encore un intervalle.

Remarques:

- **R1** Les intervalles I et f(I) peuvent être de natures différentes (ouvert, fermé, semi-ouvert, borné, non borné, . . .)
- ${f R2}$ L'intervalle f(I) peut être réduit à un singleton (la fonction f est alors constante).

Théorème 5

Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle I. Soient $a, b \in I$ tels que a < b et $f(a) \neq f(b)$. Alors f prend toutes les valeurs "intermédiaires" comprises entre f(a) et f(b), i.e.

$$\forall y \in [f(a), f(b)] \ (ou \ [f(b), f(a)]), \quad \exists x \in [a, b] \ / \ y = f(x)$$

Exemple:

Existence d'au moins une solution à l'équation f(x) = 0.

Soit f une fonction continue sur un intervalle I.

S'il existe deux éléments $a, b \in I$, a < b tels que $f(a)f(b) \le 0$ (i.e. f(a) et f(b) sont de signes opposés), alors l'équation f(x) = 0 admet au moins une solution dans [a, b].

Remarque:

L'équation f(x) = g(x) est équivalente à l'équation h(x) = 0 avec h = f - g. On peut alors appliquer le théorème des valeurs intermédiaires sur la fonction f - g.

Théorème 6

 $Si\ f\ est\ une\ fonction\ continue\ sur\ un\ segment\ [a,b],\ alors\ f\ est\ born\'ee\ sur\ [a,b]\ et\ atteint\ ses\ bornes.$

Remarque:

Autrement dit, sur un segment [a,b], une fonction f aura toujours un maximum et un minimum.

De plus, on aura
$$f([a,b]) = \left[\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)\right]$$
.

Proposition 7

- $Si\ f\ est\ une\ fonction\ croissante\ et\ continue\ sur\ [a,b],\ alors$

$$f([a,b]) = [f(a), f(b)]$$

- Si f est une fonction décroissante et continue sur [a, b], alors

$$f([a,b]) = [f(b), f(a)]$$

7.1.3 Théorème de la bijection

Proposition 8

Soit I un intervalle et soit $f: I \to \mathbb{R}$ une fonction strictement monotone sur I. Alors f est une fonction injective.

Démonstration:

Supposons par exemple que f soit strictement croissante sur I.

Soient $x, x' \in I$ tels que f(x) = f(x').

Il nous faut montrer que x = x'.

Par l'absurde, si $x \neq x'$: il y a deux cas.

- si x < x'. Alors puisque f strictement croissante, f(x) < f(x'): impossible.
- si x > x'. Alors puisque f strictement croissante, f(x) > f(x'): impossible.

Ainsi, il n'est pas possible qu'on ait $x \neq x'$. Ainsi x = x'.

On a donc montré que $\forall x, x' \in I$, si f(x) = f(x'), alors x = x'.

Théorème 9

Théorème de la bijection

Soit $f: I \to \mathbb{R}$ une fonction. Si

- f est continue sur I
- f est strictement monotone sur I

Alors, f est une bijection de l'intervalle I sur l'intervalle J = f(I).

De plus, sa réciproque f^{-1} est également continue sur J et strictement monotone sur J, de même sens de variation que f.

Exemple:

Existence d'exactement une solution à l'équation f(x) = 0.

Soit f une fonction continue sur un intervalle I.

S'il existe deux éléments $a, b \in I$, a < b tels que $f(a)f(b) \le 0$ (i.e. f(a) et f(b) sont de signes opposés), alors l'équation f(x) = 0 admet une et une seule solution dans [a, b].

Remarque:

Les courbes représentatives des fonctions f et f^{-1} sont symétriques par rapport à la droite y = x.

Exemple:

On se sert souvent des bijections pour définir et étudier des suites implicites.

 \rightarrow en TD/DM

7.2 Dérivabilité en un point

7.2.1**Définitions**

Définition 10

Soit $f: D \to \mathbb{R}$ et soit $a \in D$ tel que f soit définie au voisinage de a.

On dit que f est dérivable en a si la quantité :

$$\frac{f(x) - f(a)}{x - a}$$

admet une limite finie lorsque $x \to a$. Si c'est le cas, cette limite est appelé nombre dérivé de f en a, que l'on note f'(a). On a donc

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

Remarques:

R1 – On peut également dire que $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

R2 – La quantité $\frac{f(x) - f(a)}{x - a}$ représente le coefficient directeur de la droite joignant les points de coordonnées (x, f(x)) et (a, f(a)). Si cette quantité admet une limite finie, cela correspond au coefficient

Théorème 11

Soit $f:D\to\mathbb{R}$ et soit $a\in D$. Si la fonction f est dérivable en x_0 , alors la courbe \mathcal{C}_f admet une tangente au point d'abscisse a, dont l'équation est :

$$y = f'(a)(x - a) + f(a)$$

Démonstration:

Notons A le point de coordonnées (a, f(a)).

La tangente en A a nécessairement une équation du type : $y = \alpha x + \beta$.

avec $\alpha, \beta \in \mathbb{R}$. Comme on l'a remarqué ci-dessus, le coefficient directeur de la tangente en A est f'(a). On a donc $\alpha = f'(a)$. Ainsi l'équation de la tangente est : $y = f'(a)x + \beta$.

De plus, la droite doit passer par le point A. Donc l'équation doit être vérifiée pour x = a et y = f(a). Autrement dit: $f(a) = f'(a)a + \beta \iff \beta = f(a) - af'(a)$.

Ainsi l'équation de la droite est : y = f'(a)x + f(a) - af'(a) = f'(a)(x-a) + f(a).

Remarque:

Si la quantité $\frac{f(x)-f(a)}{x-a}$ tend vers $\pm \infty$, la fonction f ne sera pas dérivable en a, mais la courbe admettra une (demi-)tangente verticale en a.

7.2.2 Dérivées usuelles

f(x)	f'(x)	Dérivabilité
1	0	\mathbb{R}
x	1	\mathbb{R}
x^2	2x	\mathbb{R}
x^3	$3x^2$	\mathbb{R}
$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2} = (-1)x^{-2}$	\mathbb{R}^*
$\boxed{\frac{1}{x^2} = x^{-2}}$	$-\frac{2}{x^3} = (-2)x^{-3}$	\mathbb{R}^*

f(x)	f'(x)	Dérivabilité
$\sqrt{x} = x^{1/2}$	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-1/2}$	$\underline{\underline{]0,}} + \infty[$
$x^n \ (n \in \mathbb{Z})$	nx^{n-1}	
		\mathbb{R}^* si $n < 0$
$x^{\alpha} \ (\alpha \in \mathbb{R})$	$\alpha x^{\alpha-1}$	$]0,+\infty[$
$\ln(x)$	$\frac{1}{x}$	$]0,+\infty[$
e^x	e^x	\mathbb{R}

7.2.3 Propriétés

Théorème 12

Soit $f: D \to \mathbb{R}$ et soit $a \in D$.

Si la fonction f est dérivable en a, alors f est continue en a.

Démonstration:

Supposons que la fonction f soit dérivable en a. On a donc : $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = f'(a)$. Puisque $\lim_{x\to a} (x-a) = 0$, pour que la fraction admette une limite finie, il est nécessaire qu'on ait une f.I. " $\frac{0}{0}$ ", et donc nécessairement $\lim_{x\to a} (f(x)-f(a)) = 0$, autrement dit $\lim_{x\to a} f(x) = f(a)$.

Remarque:

La réciproque est fausse. Par exemple, la fonction valeur absolue $x \mapsto |x|$ est continue en 0 mais n'est pas dérivable en 0.

Définition 13

Soit $f: D \to \mathbb{R}$ et soit $a \in D$.

- On dit que f est **dérivable en** a **à droite**, si $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a}$ existe et est finie. On note alors cette limite $f'_d(a)$.
- On dit que f est **dérivable en** a **à gauche**, si $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a}$ existe et est finie. On note alors cette limite $f'_g(a)$.

Proposition 14

$$f \text{ d\'erivable en } a \in D \iff \begin{cases} f \text{ d\'erivable \`a droite en a} \\ f \text{ d\'erivable \`a gauche en a} \\ f'_d(a) = f'_g(a) \end{cases}$$

7.2.4 Sommes, produits, quotients

Théorème 15

Soient f et g deux fonctions dérivables en a. Alors

1. f + g est dérivable en a et

$$(f+g)'(a) = f'(a) + g'(a)$$

2. fg est dérivable en a et

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$

3. Si $g(a) \neq 0$, alors $\frac{f}{g}$ est dérivable en a et :

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

4. Pour tout $\lambda \in \mathbb{R}$, λf est dérivable en a et $(\lambda f)'(a) = \lambda f'(a)$.

Démonstration:

Démonstration pour le produit. Pour tout $x \in D$ dans un voisinage de a:

$$\frac{(fg)(x) - fg(a)}{x - a} = \frac{f(x)g(x) - f(a)g(a)}{x - a}$$

$$= \frac{f(x)(g(x) - g(a)) + g(a)f(x) - f(a)g(a)}{x - a}$$

$$= \frac{f(x)(g(x) - g(a)) + g(a)(f(x) - f(a))}{x - a}$$

$$= f(x)\frac{g(x) - g(a)}{x - a} + g(a)\frac{f(x) - f(a)}{x - a}$$

$$\xrightarrow{x \to a} f(a)g'(a) + f'(a)g(a)$$

Démonstration pour le quotient. Puisque $g(a) \neq 0$ et que g est continue en a, on sait que sur tout un voisinage de a, les g(x) sont non nuls. On a alors :

$$\frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$

$$= \frac{f(x)g(a) - f(a)g(x)}{(x - a)g(x)g(a)}$$

$$= \frac{(f(x) - f(a))g(a) + f(a)g(a) - f(a)g(x)}{(x - a)g(x)g(a)}$$

$$= \frac{\frac{f(x) - f(a)}{x - a}g(a) - f(a)\frac{g(x) - g(a)}{x - a}}{g(x)g(a)}$$

$$\xrightarrow{x \to a} \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

7.2.5 Dérivée d'une composée

Théorème 16

Soit $u: I \to J$ dérivable en un point $a \in I$. Soit $f: J \to \mathbb{R}$ dérivable en $b = u(a) \in J$. Alors la fonction $f \circ u$ est dérivable en a et $(f \circ u)'(a) = u'(a) \times f'(u(a))$.

Lorsqu'on a une expression qui est de la forme "f(u(x))", on utilise donc le tableau suivant des dérivées usuelles de composées :

f(x)	f'(x)
u(x)	u'(x)
$u(x)^2$	2u'(x)u(x)
$u(x)^3$	$3u'(x)u(x)^2$
$\frac{1}{u(x)}$	$-\frac{u'(x)}{u(x)^2}$
$\boxed{\frac{1}{u(x)^2}}$	$-\frac{2u'(x)}{u(x)^3}$

f(x)	f'(x)
$\sqrt{u(x)}$	$\frac{u'(x)}{2\sqrt{u(x)}}$
$u(x)^n \ (n \in \mathbb{Z})$	$nu'(x)u(x)^{n-1}$
$u(x)^{\alpha} \ (\alpha \in \mathbb{R})$	$\alpha u'(x)u(x)^{\alpha-1}$
$\ln(u(x))$	$\frac{u'(x)}{u(x)}$
$e^{u(x)}$	$u'(x)e^{u(x)}$

7.2.6 Dérivée d'une fonction réciproque

Théorème 17

Soit $f: I \to J = f(I)$ une fonction continue et strictement monotone sur I.

On sait alors que f est une bijection de I sur un intervalle J.

Soit $a \in I$ tel que f soit dérivable en a. Notons $b = f(a) \in J$ (et donc $a = f^{-1}(b)$). Alors

$$f^{-1}$$
 est dérivable en $b = f(a) \iff f'(a) \neq 0$

 $Dans \ ce \ cas, \ on \ a :$

$$(f^{-1})'(b) = (f^{-1})'(f(a)) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

Remarque:

Graphiquement, une fonction est dérivable en un point si sa courbe représentative admet une tangente NON VERTICALE en ce point.

Puisque les courbes de f et f^{-1} sont symétriques par rapport à l'axe y = x, la courbe de f^{-1} admet bien une tangente non verticale en un point si et seulement si la courbe de f n'admet pas de tangente horizontale au point symétrique. C'est pour cela qu'il faut que $f'(a) \neq 0$.

7.2.7 Dérivabilité et équivalent

Théorème 18

Soit f une fonction dérivable en a telle que $f'(a) \neq 0$. Alors : $f(x) - f(a) \underset{x \to a}{\sim} f'(a)(x-a)$

Exemples:

$$\exp(x) - \exp(0) \underset{x \to 0}{\sim} \exp'(0)(x - 0) \implies e^{x} - 1 \underset{x \to 0}{\sim} x$$

$$\ln(x) - \ln(0) \underset{x \to 1}{\sim} \ln'(1)(x - 1) \quad \Longrightarrow \quad \left[\ln(x) \underset{x \to 1}{\sim} x - 1 \right]$$

En notant $\forall x > -1$, $f(x) = \ln(1+x)$ et donc $f'(x) = \frac{1}{1+x}$

$$f(x) - f(0) \underset{x \to 0}{\sim} f'(0)(x - 0) \implies \boxed{\ln(1+x) \underset{x \to 0}{\sim} x}$$

En notant $\forall x > -1$, $g(x) = (1+x)^{\alpha}$ et donc $g'(x) = \alpha(1+x)^{\alpha-1}$

$$g(x) - g(0) \underset{x \to 0}{\sim} g'(0)(x - 0) \implies \boxed{(1+x)^{\alpha} - 1 \underset{x \to 0}{\sim} \alpha x}$$

7.3 Dérivation sur un intervalle

7.3.1 Classe d'une fonction

Définition 19

Soit f une fonction définie sur son domaine de définition D_f . Si E désigne l'ensemble des points de D_f en lesquels f est dérivable, on définit alors une fonction sur E, notée f', telle que f': $E \to \mathbb{R} \atop x \mapsto f'(x)$. Cette fonction est appelée la **fonction dérivée de** f.

Définition 20

On appelle **dérivée** n-ième de f l'action de dérivée n fois la fonction f:

$$f^{(0)} = f, \quad f^{(1)} = f', \qquad \forall n \geqslant 1, \ f^{(n)} = (f^{(n-1)})' = (f')^{(n-1)}$$

Une fonction f est n-fois dérivable sur I si elle est (n-1)-fois dérivable sur I et si la fonction $f^{(n-1)}$ est dérivable sur I.

Remarques:

 $\mathbf{R1}$ – On note :

- $C^0(I)$ l'ensemble des fonctions **continues sur** I.
- $C^1(I)$ l'ensemble des fonctions **continûment dérivables sur** I, i.e. l'ensemble des fonctions qui sont dérivables sur I dont la fonction dérivée f' est continue sur I.
- $C^n(I)$ l'ensemble des fonctions n fois continûment dérivables sur I, i.e. l'ensemble des fonctions n-fois dérivables sur I dont la fonction dérivée n-ième $f^{(n)}$ est continue sur I;
- $\mathcal{C}^{\infty}(I)$ l'ensemble des fonctions indéfiniment dérivables sur I
- **R2** On a les inclusions suivantes : $\mathcal{C}^{\infty}(I) \subset \cdots \subset \mathcal{C}^{n+1}(I) \subset \mathcal{C}^{n}(I) \subset \cdots \subset \mathcal{C}^{1}(I) \subset \mathcal{C}^{0}(I) \subset \mathbb{R}^{I}$

7.3.2Dérivées *n*-ièmes usuelles

Proposition 21

Dérivée n-ième d'une puissance

Notons $f: x \longmapsto x^n$ où $n \in \mathbb{N}$. Alors la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} et:

$$\forall k \in \mathbb{N}, \ \forall x \in \mathbb{R}, f^{(k)}(x) = \begin{cases} n(n-1)(n-2)\cdots(n-k+1)x^{n-k} & si \ k \leq n \\ 0 & si \ k > n \end{cases}$$

Remarque:

Pour tout réel x, on a $f(x) = x^n$, $f'(x) = nx^{n-1}$, $f''(x) = n(n-1)x^{n-2}$, ..., $f^{(n)}(x) = n!$ et $f^{(n+1)}(x) = 0$.

Proposition 22

Dérivée n-ième de la fonction inverse

Notons $f: x \longmapsto \frac{1}{x}$. Alors la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R}^* et:

$$\forall k \in \mathbb{N}, \ \forall x \in \mathbb{R}^*, \ f^{(k)}(x) = \frac{(-1)^k k!}{x^{k+1}}$$

Démonstration:

Montrons-le par récurrence :

k=0: f est 0-fois dérivable sur I et $\forall x \in I, f(x) = \frac{(-1)^0 0!}{x^{0+1}}$. Soit $k \geqslant 0$. On suppose la propriété vraie au rang k.

Posons $f^{(k)}: x \mapsto \frac{(-1)^k k!}{x^{k+1}}$ qui est dérivable sur I puisque $x \mapsto x^{k+1}$ l'est et n'est jamais nulle, donc f est bien

$$\forall x \in I, f^{(k+1)}(x) = (-1)^k k! \times \frac{-(k+1)}{x^{k+2}} = \frac{(-1)^{k+1}(k+1)!}{x^{k+2}}$$

Proposition 23

Dérivée n-ième des fonctions exp et la

La fonction exponentielle est de classe C^{∞} sur \mathbb{R} , et:

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \exp^{(n)}(x) = \exp(x)$$

La fonction ln est de classe C^{∞} sur $]0, +\infty[$ et :

$$\forall n \in \mathbb{N}, \ \forall x > 0, \ \ln^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$$

Démonstration:

C'est évident pour la fonction exp.

De plus, on sait que $\forall x > 0$, $\ln'(x) = \frac{1}{x}$, donc en notant $f: x \mapsto \frac{1}{x}$, on a:

$$\forall x > 0, \ \ln^{(n)}(x) = f^{(n-1)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$$

7.3.3 Opérations sur les fonctions de classe C^n

Proposition 24

Stabilité par combinaison linéaire

Si f et g sont deux fonctions de classe C^n sur un intervalle I, alors pour tout $\lambda \in \mathbb{R}$, $(\lambda f + g)$ est encore une fonction de classe C^n et de plus :

$$(\alpha f + g)^{(n)} = \alpha f^{(n)} + g^{(n)}$$

Proposition 25

Formule de Leibniz

Soient f et g deux fonctions de classe C^n sur un intervalle I, alors le produit (fg) est encore de classe C^n et :

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$$

Remarques:

R1 – On remarque l'analogie avec la formule du Binôme de Newton

R2 – De même, si f et g sont deux fonctions de classe \mathcal{C}^n sur un intervalle I et si g ne s'annule pas sur l'intervalle I, alors la fonction $x \mapsto \frac{f(x)}{g(x)}$ est de classe \mathcal{C}^n sur l'intervalle I, mais on n'a pas a priori de formule pour calculer $\left(\frac{f}{g}\right)^{(n)}$.

Proposition 26

Soient I et J deux intervalles et soit $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ avec $f(I) \subset J$. Si f est de classe C^n sur I, et si g est de classe C^n sur J, alors $g \circ f$ est de classe C^n .

Remarque:

On n'a a priori pas de formule pour calculer directement $(g \circ f)^{(n)}$.

Proposition 27

Soient I et J deux intervalles et soit f une fonction bijective de I dans J.

Si f est de classe C^n sur I, et si $\forall x \in I$, $f'(x) \neq 0$, alors la fonction réciproque f^{-1} est également de classe C^n sur J.

Remarques:

R1 – Autrement dit, si f est bijective et de classe C^n , il suffit que f^{-1} soit dérivable pour que f^{-1} soit finalement de classe C^n .

Exemples:

E1 – Soit $\alpha \in \mathbb{R}$. La fonction $f_{\alpha} = x \mapsto x^{\alpha} = e^{\alpha \ln(x)}$ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$ et :

$$\forall n \in \mathbb{N}, \ \forall x > 0, \ \alpha(\alpha - 1) \cdots (\alpha - n + 1) x^{\alpha - n}$$

E2 – Pour a > 0, la fonction $f_a : x \mapsto a^x = e^{x \ln(a)}$ est de classe \mathcal{C}^{∞} sur \mathbb{R} et :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f_a^{(n)}(x) = (\ln(a))^n a^x$$

7.4 Théorèmes de dérivabilité

7.4.1 Théorème Limite de la Dérivée

Théorème 28

Soit f une fonction continue sur[a,b] mais de classe C^n a priori uniquement sur[a,b[. Si la fonction $f^{(n)}$ admet une limite finie ℓ en b, alors f est de classe C^n sur[a,b] et $f^{(n)}(b) = \ell$.

Proposition 29

Soit I un intervalle et soit $a \in I$.

Soit f une fonction continue sur I (donc en a) et de classe C^1 sur $I \setminus \{a\}$.

Si f' admet une limite finie en a, alors f est de classe C^1 sur I et

$$f'(a) = \lim_{x \to a} f'(x)$$

Remarque:

Attention, la continuité en a est importante

7.4.2 Condition nécessaire d'extremum local

Définition 30

Soit f une fonction définie sur un intervalle I et soit $x_0 \in I$.

On dit que f admet un maximum local en x_0 s'il existe un réel $\alpha > 0$ tel que

$$\forall x \in [x_0 - \alpha, x_0 + \alpha] \cap I, \ f(x) \leqslant f(x_0)$$

On dit que f admet un **minimum local en** x_0 s'il existe un réel $\alpha>0$ tel que

$$\forall x \in [x_0 - \alpha, x_0 + \alpha] \cap I, \ f(x) \geqslant f(x_0)$$

Un **extremum local** est un minimum ou maximum local.

Théorème 31

Condition nécessaire d'extremum local

Soit f une fonction dérivable sur un intervalle I et soit x_0 un point intérieur de I (i.e. qui n'est pas sur les bords de l'intervalle).

Si f possède un extremum local en x_0 , alors $f'(x_0) = 0$

autrement dit, il est nécessaire que $f'(x_0) = 0$ pour que f possède un extremum local en x_0 .

Remarque:

Si l'extremum est situé sur l'extrémité x_0 de l'intervalle I, rien n'impose alors que $f'(x_0) = 0$

7.4.3 Théorème de Rolle

Théorème 32

Théorème de Rolle

Soient a et b deux réels avec a < b.

Soit f une fonction de $[a,b] \to \mathbb{R}$ vérifiant :

- f continue sur [a, b]
- $f d\'{e}rivable sur]a,b[$
- -f(a) = f(b)

Alors il existe un $c \in]a,b[$ tel que f'(c) = 0.

Démonstration:

On sait que f est continue sur [a, b], donc f bornée et atteint ses bornes.

Notons $M = \sup_{[a,b]} f = f(c)$ et $m = \inf_{[a,b]} f = f(d)$.

1er cas : m = M, alors $\forall x \in [a, b], m \leq f(x) \leq M = m$, donc f(x) = m. Ainsi f est constante sur [a, b], d'où $\forall c \in]a, b[, f'(c) = 0$.

2ème cas : m < M. On a alors m < f(a) ou f(a) < M (car sinon $m \ge f(a)$ et $f(a) \ge M$, on aurait $M \le f(a) \le m < M$: absurde).

Supposons par exemple que m < f(a) = f(b), i.e. f(d) < f(a) = f(b).

Donc d est un point intérieur de [a, b], f est dérivable en d, f admet un extremum en d, donc on a f'(d) = 0.

7.4.4 Théorème des Accroissements Finis

Théorème 33

Théorème des Acroissements Finis

Soient a et b deux réels avec a < b.

Soit f une fonction de $[a,b] \to \mathbb{R}$ vérifiant :

- -f continue sur[a,b]
- $f d\'{e}rivable sur]a,b[$

Alors il existe un $c \in]a, b[$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

ou autrement dit, il existe un $c \in]a,b[$ tel que

$$f(b) - f(a) = f'(c)(b - a)$$

Démonstration :

Soit $\varphi: \begin{bmatrix} [a,b] & \to & \mathbb{R} \\ x & \mapsto & f(x)-f(a)-K(x-a) \end{bmatrix}$ où K est une constante réelle choisie pour que $\varphi(b)=0$.

K existe et est unique, puisque $K = \frac{f(b) - f(a)}{b - a}$.

On a:

- $-\varphi$ est continue sur [a,b] car f l'est
- $-\varphi$ est dérivable sur a,b car f l'est
- $-\varphi(a)=\varphi(b)=0$

Donc (Théorème de Rolle), il existe $c \in]a,b[$ tel que $\varphi'(c)=0$, i.e. f'(c)-K=0.

D'où K = f'(c), i.e. f(b) - f(a) = (b - a)f'(c).

Conséquences 34

Inégalité des Accroissements Finis

Soient a et b deux réels avec a < b.

Soit f une fonction de $[a,b] \to \mathbb{R}$ vérifiant :

- f continue sur [a, b]
- -f dérivable sur]a,b[
- il existe deux réels m et M tels que $\forall x \in]a,b[,\ m \leqslant f'(x) \leqslant M$

Alors:

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$

Conséquences 35

Inégalité des Accroissements Finis

Soit f une fonction dérivable sur un intervalle I et s'il existe K > 0 tel que

$$\forall t \in I, |f'(t)| \leq K$$

alors pour tous $x, y \in I$, on a:

$$|f(x) - f(y)| \le K|x - y|$$

7.4.5 Variations des fonctions

Théorème 36

Sens de variation d'une fonction

Soit f une fonction dérivable sur un intervalle I.

- f est constante sur $I \iff f' = 0$ sur I
- f est croissante sur $I \iff f' \geqslant 0$ sur I
- f est déconstante sur $I \iff f' \leqslant 0$ sur I

Démonstration:

Montrons l'équivalence pour f est croissante sur $I \iff f' \geqslant 0$ sur I

 \Rightarrow Supposons que f est croissante sur I. Alors :

$$\forall x_0 \in I, \forall x \in I \setminus \{x_0\}, \ \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$$

Lorsque $x \to x_0$, f étant dérivable en x_0 on obtient en passant à la limite dans l'inégalité :

$$f'(x_0) \ge 0$$

 \Leftarrow Soient $a \leqslant b$, deux réels de I. La fonction f est continue sur [a,b], dérivable sur]a,b[, donc

$$\exists c \in]a, b[\ / \ f(b) - f(a) = (b - a)f'(c) \ge 0 \Longrightarrow f(a) \le f(b)$$

donc f est croissante sur I.

Remarque:

Soit f une fonction dérivable sur I.

- Si f' > 0 sur I sauf éventuellement en un nombre fini de points où elle s'annule, alors la fonction f est strictement croissante.
- Si f' < 0 sur I sauf éventuellement en un nombre fini de points où elle s'annule, alors la fonction f est strictement décroissante.

7.4.6 Convexité d'une fonction

Définition 37

Soit f une fonction de classe C^2 sur un intervalle I.

On dit que f est **convexe sur** I si une des propositions suivantes (équivalentes) est vérifiée :

- \bullet la courbe de f est au-dessus de toutes ses tangentes
- la fonction f' est croissante sur I
- la fonction f'' est positive sur I

Définition 38

Soit f une fonction de classe C^2 sur un intervalle I.

On dit que f est **concave sur** I si -f est une fonction convexe sur I, autrement dit si une des propositions suivantes (équivalentes) est vérifiée :

- ullet la courbe de f est en-dessous de toutes ses tangentes
- la fonction f' est décroissante sur I
- la fonction f'' est négative sur I

Remarque:

Si f est une fonction de classe \mathcal{C}^2 sur I, et si f'' s'annule en un point x_0 en changeant de signe, alors la fonction f change de convexité au point x_0 . Le point de coordonnées $(x_0, f(x_0))$ est alors appelé un **point** d'inflexion de la courbe \mathcal{C}_f .

Un point d'inflexion est donc un point où la courbe C_f traverse sa tangente.

Théorème 39

Inégalités de convexité

La fonction exponentielle est une fonction convexe sur $\mathbb R$ et sa courbe est en particulier située au-dessus de sa tangente en 0:

$$\forall x \in \mathbb{R}, \ e^x \geqslant 1 + x$$

La fonction logarithme népérien est une fonction concave sur $]0,+\infty[$ et sa courbe est en particulier située en-dessous de sa tangente en 1 :

$$\forall x > 0, \ \ln(x) \leqslant x - 1$$

ou autrement dit

$$\forall x > -1, \ \ln(1+x) \leqslant x$$

7.5 Développements limités

7.5.1 Développement limité en 0

Définition 40

Soit f une fonction définie au voisinage de 0.

On dit que f admet un développement limité d'ordre n au voisinage de 0 s'il existe $a_0, a_1, \ldots, a_n \in \mathbb{R}$ tels que au voisinage de 0:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + o(x^n)$$

autrement dit, f(x) s'écrit localement comme la somme de :

- une fonction polynôme $\sum_{k=0}^{n} a_k x^k$, appelé la **partie régulière du DL**
- une fonction négligable devant $x^n : o(x^n)$, appelé le **reste du DL**

Exemple:

Soit f la fonction définie par $\forall x \neq 1, f(x) = \frac{1}{1-x}$. Cherchons le développement limité de cette fonction au voisinage de 0.

On sait que pour tout x au voisinage de 0,on a : $1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x^{n+1}}{1 - x}$. On peut donc écrire que, au voisinage de 0 :

$$f(x) = 1 + x + x^{2} + \dots + x^{n} + \frac{x^{n+1}}{1 - x}$$

$$= 1 + x + x^{2} + \dots + x^{n} + x^{n} \varepsilon(x) \quad \text{avec } \varepsilon(x) = \frac{x}{1 - x} \xrightarrow{x \to 0} 0$$

$$= 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

On a donc trouvé un développement limité de $\frac{1}{1-x}$ au voisinage de 0.

Définition 41

Soit $x_0 \in \mathbb{R}$. Si f est définie au voisinage de x_0 , on dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe $b_0, b_1, \ldots, b_n \in \mathbb{R}$ tels que au voisinage de 0:

$$f(x) = \sum_{k=0}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

Théorème 42

Si f admet un développement limité d'ordre n au voisinage de x_0 , alors la partie régulière de ce développement limité est unique.

7.5.2 Formule de Taylor-Young

Théorème 43

Formule de Taylor-Young

Si f est une fonction de classe C^{n+1} sur un intervalle I et si $x_0 \in I$, alors f admet un développement limité d'ordre n au voisinage de x_0 :

$$f(x) \underset{x \to x_0}{=} \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n) \iff f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + o(h^n)$$

Remarque:

Le plus souvent, on utilise ce théorème dans le cas particulier où $x_0 = 0$, ce qui donne :

$$f(x) \underset{x \to 0}{=} f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!} + o(x^n)$$

Proposition 44

Si f possède un DL d'ordre n en x_0 : $f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + o((x - x_0)^n)$, alors, on a nécessairement $\lim_{x \to x_0} f(x) = a_0$.

De plus, au voisinage de x_0 , f est équivalente au premier terme non nul de son développement limité : c'est-à-dire que si p est tel que pour tout $0 \le k \le p-1$, $a_k = 0$ et $a_p \ne 0$, alors, on a au voisinage de x_0 :

$$f(x) \underset{x \to x_0}{\sim} a_p (x - x_0)^p$$

Théorème 45

DL usuels AU VOISINAGE DE 0

Les DL usuels suivants existent d'après le Théorème de Taylor-Young. Il faut les apprendre par coeur.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\boxed{\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + o(x^n)}$$

$$\boxed{\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots + (-1)^n x^n + o(x^n)}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n)$$

$$n(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} + o(x^n)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

$$\sqrt{1+x} = 1 + \frac{x}{2} + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2!}x^2 + \dots + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)\cdots\left(\frac{1}{2} - n + 1\right)}{n!}x^n + o(x^n)$$

7.5.3 Opérations sur les DL

Proposition 46

Soient $f, g: I \to \mathbb{R}$ admettant chacune un développement limité d'ordre n au voisinage de 0:

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$
 et $g(x) = \sum_{k=0}^{n} b_k x^k + o(x^n)$

1. Alors f + g admet le développement limité d'ordre n au voisinage de 0 suivant :

$$(f+g)(x) = \sum_{k=0}^{n} (a_k + b_k)x^k + o(x^n)$$

2. Alors fg admet un développement limité d'ordre n au voisinage de 0 que l'on obtient en faisant le produit des polynômes $\sum_{k=0}^{n} a_k x^k$ et $\sum_{k=0}^{n} b_k x^k$ et en ne gardant que les termes de degré inférieur ou égal à n.

Exemple:

Calculer le développement limité d'ordre 2 au voisinage de 0 de $\frac{e^x}{1+x}$.

$$\frac{e^x}{1+x} = e^x \times \frac{1}{1+x}$$

$$= \left(1+x+\frac{x^2}{2}+o(x^2)\right)\left(1-x+x^2+o(x^2)\right)$$

$$= 1-x+x^2+x-x^2+\frac{x^2}{2}+o(x^2)$$

$$= 1+\frac{x^2}{2}+o(x^2)$$

Proposition 47

Soit $f: I \to J$ une fonction admettant un développement limité d'ordre n au voisinage de 0 et telle que $\lim_{x\to 0} f(x) = 0$:

$$f(x) = \underbrace{\sum_{k=1}^{n} a_k x^k}_{P(x)} + o(x^n)$$

Soit $g: J \to \mathbb{R}$ une fonction admettant un développement limité d'ordre n au voisinage de 0:

$$g(x) = \underbrace{\sum_{k=0}^{n} b_k x^k}_{Q(x)} + o(x^n)$$

Alors $g \circ f$ admet un développement limité d'ordre n que l'on obtient effectuant $Q \circ P$ et en ne gardant que les termes de dégré inférieur ou égal à n.

Exemple:

Déterminer le développement limité d'ordre 2 au voisinage de 0 de $e^{\sqrt{x+1}}$.

$$e^{\sqrt{x+1}} = \exp\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right)$$

$$= e \times \exp\left(\frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right)$$

$$= e \times \left(1 + \left(\frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right) + \frac{1}{2}\left(\frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right)^2 + o(x^2)\right)$$

$$= e\left(1 + \frac{1}{2}x + o(x^2)\right)$$

$$= e + \frac{e}{2}x + o(x^2)$$

Proposition 48

Lorsqu'on veut faire le développement limité d'un quotient, on se sert d'une composée avec le développement limité de $\frac{1}{1+x}$ ou $\frac{1}{1-x}$.

Exemples:

E1 – Déterminer le développement limité d'ordre 2 au voisinage de 0 de $\frac{1}{1+\ln(1+x)}$.

$$\frac{1}{1+\ln(1+x)} = \frac{1}{1+x-\frac{x^2}{2}+o(x^2)}$$

$$= 1 - \left(x - \frac{x^2}{2} + o(x^2)\right) + \left(x - \frac{x^2}{2} + o(x^2)\right)^2 + o(x^2)$$

$$= 1 - x + \frac{1}{2}x^2 + x^2 + o(x^2)$$

$$= 1 - x + \frac{3}{2}x^2 + o(x^2)$$

E2 – Déterminer le développement limité d'ordre 3 au voisinage de 0 de $\frac{1}{1+\sqrt{1+x}}$.

$$\frac{1}{1+\sqrt{1+x}} = \frac{1}{1+1+\frac{x}{2}-\frac{x^2}{8}+\frac{x^3}{16}+o(x^3)}$$

$$= \frac{1}{2+\frac{x}{2}-\frac{x^2}{8}+\frac{x^3}{16}+o(x^3)}$$

$$= \frac{1}{2} \times \frac{1}{1+\frac{x}{4}-\frac{x^2}{16}+\frac{x^3}{32}+o(x^3)}$$

$$= \frac{1}{2}\left(1-\left(\frac{x}{4}-\frac{x^2}{16}+\frac{x^3}{32}\right)+\left(\frac{x}{4}-\frac{x^2}{16}+\frac{x^3}{32}\right)^2-\left(\frac{x}{4}-\frac{x^2}{16}+\frac{x^3}{32}\right)^3\right)+o(x^3)$$

$$= \frac{1}{2}\left(1-\frac{x}{4}+\frac{x^2}{8}-\frac{5}{64}x^3\right)+o(x^3)$$

$$= \frac{1}{2}-\frac{x}{8}+\frac{x^2}{16}-\frac{5}{128}x^3+o(x^3)$$

7.5.4 Comportement local et DL

Proposition 49

Si f admet un développement limité d'ordre 1 au voisinage de x_0 ,

$$f(x) = a + b(x - x_0) + o((x - x_0))$$

alors f est dérivable en x_0 et $a = f(x_0)$ et $b = f'(x_0)$.

Dans ce cas, l'équation de la tangente à la courbe représentative de f au point d'abscisse x_0 est donc le terme $y = a + b(x - x_0)$ et pour connaître la position de la courbe par rapport à la tangente, il suffit de regarder le signe du terme suivant du développement limité.

Exemple:

Calculons le développement limité d'ordre 3 en 0 de la fonction f définie par $f(x) = \frac{1}{1+e^x}$.

$$\frac{1}{1+e^x} = \frac{1}{1+1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3)}$$

$$= \frac{1}{2+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3)}$$

$$= \frac{1}{2} \times \frac{1}{1+\frac{x}{2}+\frac{x^2}{4}+\frac{x^3}{12}+o(x^3)}$$

$$= \frac{1}{2} \left(1-\left(\frac{x}{2}+\frac{x^2}{4}+\frac{x^3}{12}\right)+\left(\frac{x}{2}+\frac{x^2}{4}+\frac{x^3}{12}\right)^2-\left(\frac{x}{2}+\frac{x^2}{4}+\frac{x^3}{12}\right)^3\right)+o(x^3)$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^3}{48} +o(x^3)$$
eq de la tangente donne position de la tangente

Donc la courbe représentative de f admet en 0 une tangente d'équation $y = \frac{1}{2} - \frac{x}{4}$.

De plus, on a $f(x) - \left(\frac{1}{2} - \frac{x}{4}\right) = \frac{x^3}{48} + o(x^3)$, donc au voisinage de 0, la position de la courbe par rapport à la tangente est donnée par le signe de $\frac{x^3}{48}$. Pour x < 0, la courbe est en-dessous de la tangente, et pour x > 0, la courbe est au-dessus de la tangente.