Nombres complexes. Polynômes.

Questions de cours

K06.1 Camille, Cécile, Damien

Racines n-ièmes de l'unité : définition et somme.

K06.2 Constance Be., Hélène, Inès, Manon V., Marie, Mathilde L.

Equations du second degré.

K06.3 Capucine, Claire, Manon P., Marion, Martin, Mathilde B.

Division euclidienne dans $\mathbb{K}[X]$. Démonstration de l'unicité.

K06.4 Adèle, Alexandre, Jean-Damien, Juliette, Matthieu

 $P(a) = 0 \Leftrightarrow (X - a)|P.$

Nombres complexes

K06.5 Camille

Déterminer le produit des n racines n-ièmes de l'unité.

K06.6 Alexandre, Matthieu

Résoudre dans \mathbb{C} l'équation

$$z^6 = \frac{-4}{1 + i\sqrt{3}}$$

K06.7 Hélène

Résoudre dans C l'équation

$$z^6 - (3 - 2i)z^3 + 2 - 2i = 0$$

K06.8 Constance Be., Manon V.

Résoudre dans C l'équation

$$iz^4 + iz^2 + 1 + i = 0$$

K06.9 Capucine

Résoudre dans \mathbb{C} l'équation

$$z^2 - \sqrt{3}z + i = 0$$

K06.10 Inès

Résoudre dans \mathbb{C} l'équation :

$$e^z = 3\sqrt{3} - 3i$$

K06.11 Mathilde B.

Déterminer les racines cubiques de

$$Z = \frac{(1 + i\sqrt{3})^4}{(1+i)^2}$$

| K06.12 | Manon P.

Soit $n \geqslant 1$ fixé. Résoudre dans $\mathbb C$ l'équation

$$(z+i)^n = (z-i)^n$$

K06.13 Marion

Soient $n \in \mathbb{N}^*$ et $\alpha = e^{\frac{2i\pi}{n}}$. Déterminer la partie imaginaire de $(\alpha^2 + \alpha + 1)^n$.

K06.14 Jean-Damien

Soient u et v deux complexes de module 1 tels que $uv \neq -1$. Montrer que le nombre $\frac{u+v}{1+uv}$ est réel.

K06.15 Marion

Montrer que pour tout $z \in \mathbb{C}$, on a :

$$|z|=1 \Longleftrightarrow i\frac{1+z}{1-z} \in \mathbb{R}$$

K06.16 Adèle, Juliette

Soit x un réel. Linéariser $\cos^5(x)$.

Hypokhâgne B/L Khôlles Semaine 6

Polynômes

K06.17 Damien

Soit $P \in \mathbb{R}[X]$.

- 1. Montrer que si z est une racine de P, alors \overline{z} aussi.
- 2. Montrer que $(X-z)(X-\overline{z})$ est à coefficients réels.

K06.18 Camille

Effectuer la division euclidienne de $A = X^5 - 1$ par $X^3 - 1$.

K06.19 Alexandre, Hélène, Matthieu

Effectuer la division euclidienne de $A = X^5 + 6X^3 - 4$ par $B = X^2 - 5X + 3$.

K06.20 Capucine

Effectuer la division euclidienne de $A = X^4 - X^3 + X^2 - X$ par $B = X^2 - 1$

K06.21 | Constance Be., Manon V.

Effectuer la division euclidienne de $A=3X^5+2X^4-X^2+1$ par $B=X^3+X+2$

K06.22 Manon P.

Effectuer la division euclidienne de $A = X^3 + iX^2 + X$ par B = X - i + 1

K06.23 Cécile

Trouver le reste de la division euclidienne de X^{50} par $X^2 - 3X + 2$.

K06.24 Claire, Martin

Montrer que $X^2 - 2\cos(\theta)X + 1$ divise $X^{2n} - 2\cos(n\theta)X + 1$.

K06.25 Marion

Donner une condition nécessaire et suffisante sur λ et μ pour que $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$.

K06.26 Inès

Déterminer les racines du polynôme

$$P(X) = X^4 - 5X^3 + 9X^2 - 15X + 18$$

K06.27 Camille, Damien

Déterminer les racines du polynôme $P = X^5 - 1$. En déduire les factorisations de P dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$.

K06.28 Claire, Martin

Soit $P(X) = X^4 - 8X^3 + 23X^2 - 26X + 10$. Trouver une racine évidente de P, son ordre de multiplicité, et factoriser P.

K06.29 Jean-Damien

Factoriser le polynôme $8X^3 - 12X^2 - 2X + 3$ sachant que ses racines sont en progression arithmétique.

K06.30 Mathilde L.

- 1. Factoriser $1 + X + X^2 + X^3$ avec ses racines.
- 2. Plus généralement, factoriser $1 + X + X^2 + \cdots + X^n$

K06.31 Marie

Soit $P(X) = 1 + X + X^2 + X^3 + X^4$.

1. Montrer que

$$P\left(e^{i\frac{\pi}{5}}\right) = \frac{2}{1 - e^{i\frac{\pi}{5}}}$$

2. Calculer $\sum_{k=0}^{4} \cos\left(k\frac{\pi}{5}\right)$ et $\sum_{k=0}^{4} \sin\left(k\frac{\pi}{5}\right)$

K06.32 Mathilde B.

Soit $P(X) = (X+1)^7 - X^7 - 1$.

- 1. Déterminer le degré de P.
- 2. Montrer que *P* possède au moins deux racines réelles entières et en donner leur ordre de multiplicité.
- 3. Démontrer que P est divisible par $(X-j)^2$ où $j=e^{i\frac{2\pi}{3}}$.
- 4. Factoriser P dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

K06.33 Adèle, Juliette

On considère le polynôme $P(X) = 3X^5 - 13X^4 + 16X^3 - 4X^2$.

- 1. Vérifier que 2 est racine de ce polynôme.
- 2. Déterminer son ordre de multiplicité.
- 3. Factoriser P(X) dans $\mathbb{R}[X]$.

Hypokhâgne B/L Khôlles Semaine 6

| K06.34 | Manon P.

Soit $P = 2X^4 + 32$. Le polynôme P admet-il des racines dans \mathbb{R} ? Est-il irréductible dans $\mathbb{R}[X]$? S'il est réductible, factoriser P dans $\mathbb{R}[X]$.

K06.35 Constance Be.

Factoriser dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$ le polynôme

$$X^6 - 3X^2 - 2$$

K06.36 Inès

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ vérifiant

$$P(0) = 0$$
 et $P(X^2 + 1) = P(X)^2 + 1$

Indication : on pourra utiliser la suite (u_n) définie par $u_0=0$ et $\forall n\in\mathbb{N}$ $u_{n+1}=u_n^2+1$ et poser Q(X)=P(X)-X