BILAN

On considère une série à termes positifs.

La série diverge si :

- Son terme général ne tend pas vers 0
- Son terme général est supérieur ou équivalent à celui d'une série divergente

La série converge si :

- La suite des sommes partielles est majorée
- Son terme général est négligeable, inférieur ou équivalent à celui d'une série convergente

<u>Autres méthodes</u>: comparaison à une intégrale (méthode des rectangles); sommes partielles télescopiques

Séries de référence :

Série géométrique : $\sum q^n$

Elle converge si et seulement si |q|<1

Série géométrique dérivée : $\sum n q^{n-1}$; $\sum n(n-1) q^{n-2}$

Elle converge si et seulement si |q|<1

Série exponentielle $\sum \frac{x^n}{n!}$:

Elle converge pour tout réel x

Série de Riemann : $\sum \frac{1}{n^{\alpha}}$

Elle converge si et seulement $\alpha > 1$